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PREFACE
This is the forty-seventh in a series of reports growing out of the study of
radar cross sections at The Radiation Laboratory of The University of Michigan.
Titles of the reporis already published or presently in process of publication are
listed on the preceding pages.
When the study was first begun, the primary aim was to show that rada

cross sections can be determined theoretically, the results being in gocd agreemeni

with experiment. It is believed that by and large this aim has been achieved.

In continuing this study, the objective is ¢ cetermine means for computing
the radar cross section of objects in a variety of dusferent environments. This has
ied to un extension of the invesztigation to include not only the standard boundary-
value protiems, but also such iopies as the emission and propagation of electro-
magnetic and acoustic waves, and phenomena connzcted with fonized media,

Associated with .he theoretical work is an experimental program which
embrac~~ ‘a) measurement of antennas and radar scatterers in order to verify data
determinred theoretically; (b) investigetisn of antenna behavior and cross section

problems not amenable to theoretical solution; (c) problems associsted with the

design and development of microwave absorbers; and (d) Jow ard high density

ionization phenomena.

R.E, Hiatt
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I

INTRODUCTION

This is the first of a series of reports aimed at summarizing the avaiiable
information about the scritering properties of selected bodies of simple shape.
Perhaps the sivplesi of all shapes is the sphere, and it is probable that niore has
been written about this one body than about ali other bodies put jether. To detail
all of the results in one repur* is therefore impossible, and in seeking to summarize
them so as toprovide an intelligible account, an author is compelled to restrict him-
self to those theories und those imethods of sclution which he feels are most signi-
ficant.

In taking as the subject of this first report the diffraction of electromagnetic
energy by the sphere, our cbject is to gathev together in one place soine of the more
useful forms of solution, both exact and approximate, ziving also a brief account of
thc me'kods of derivation. Wherever pussible references are given to tabulations of
tiie functions and series invelved, particularly ;.. conncction with the standarad Mie
solution,

Section II ir- devoted tc the Mie solution and since this is the starting point
for most of the other approaches, a detailed descriptiou is given. Cernain special
applications are discussed, and references are given to computationr based on thr.

Mie series.
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For sufficiently low frequencies an alternative: representation ot the solution
is possible in which the field components are expanded in ascending positive integral
porvers of ka, where Kk is the wave number and a is the radius of the sphere. The
corresponding exparsion for the far field amplitude is the s> :ailed Rayleigh series,
and this is described in Section III. Two derivations are given: in the first of
these the series is obtained by expanding the various terms in the Mie solution, but
in the second the low frequency cxpansion is obtained directly without any explicit
reference to the Mie result,

Section IV is concerned with the high freguency scattering behavior and the
approach which is adopted is based on the Watson t~ansfvrm. In recent vears the
\Vatson transform technique has Leaen generalized to an extent which permits the
asymptotic solution of a large class of diffraction problems, and the general method
stems frcm the fact that locaiiy all convex hodies with radii of curvature much
larger than the wavelens 'h are similar to a sphere of radius equal to that of the
conve;:- o4y in the direction of energy flow. This local analysis led Fock &94&:;} to
construct certain universal functions which have been computed and tabulated by
Logan [195{9 . Since this material dues not appear inany standard refeience, a
relatively detailed exposition is given.

In the final section the physical optics approach is considered insofar 23 it

azplies to tne sphere problem, ‘the approximate expressions ior the current
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distribution and for the :ar field are compared with the exact expressions derived
rom the Mie sevies. and 2 numerical compuarison for ka = 10 is presented.
Although the previous methode have covered the region of 'applicability' of physical
optics, it was felt that this approximate but well-known technique should be inciuded
both for historical iiterest and because of the ease with which rough and ready
answers can be obtained thereby. For a general and more critical exposition of

the physical optics method, the reader is referred to Baker and Copson [}95@.
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II
THE EXACT SOLUTION

This sectiun 1s devoted to the exact sciution of the problem of scattering of a
plane electromagnetic wave by a sphere. A brief account of the derivation is in-
cluded since almost all subsequent computations and approximations raly tc some
extent on this exact result. In addition to the homogeneous sphere and the imporiant
limiting case of perfect conductivity, results for two concentric spheres are also
presented. The simplifications stemming from the "far field" assuviiptici aic ais0
discussed. A guide to computed resulis available in the literature is presented and
socme representative curves zre included.

2.1 The Mie Series For the Sphere

The first exact sojution for the scattering of a plane wave by a homogencous
sphere is usually attributed to Mie ﬁsc% althougih much work was done befere then,
Thompson [1893} treated the perfectly conducting spbere with equal rigor, and in
kis exhaustive work on the sphere Logan [1959} gives precedence to Clebsch {:1863] .
Nevertheless the series solution for the sphere in terms of spherical wave functions
is usually referred to as the Mie series and this general usage will be employed
here. Descriptions of the solution abound in the literature, the most popuiar, per-
Laps, being that given by Stratton [1941] and it iz his presentation on which e

present account is based.

" * A
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The problem is that of determining the electric and magnetic field vectors,

£=E+E°, and g-1'+ B°

(where i ana ¢ denote incident and scattered respectively). external to x homo-
geneous sphere of radius a, permeability 4;, permittivity ¢;, and conductivity s,
in the presence of an inciden’ or primary field given by

A ~ikz
Re s

2-1"

A rectangular Cartesian coordinate system: (x, v. 7! lias been employed in whick
eqns {2-1) deseribe aplane wave travelling inthe direction of the negative z-axis with its
1 k .
clectric vector confined 1o the x direction. H = YE , where Y=75= — is the
[+] () Z wu °
intrinsic admittance cf free space; Kk is the propagation constant of the medium in
which the sphere is imbedded, whichh medium is 2ssumed homogeneous, isotropic,

fand a perfect dieiectric and is here taken as free space. In terms of the permittivity

land p cmieability,

k=w ./E;Tx; ' (2-2)

wl:”

fwhere A is thewavelength, M,K.s.units are employed and the harmonic time factor

~iut . . s .
o has been suppressed. The restriction to free space iz 2 (rivia! onc because in
’a mediuz; characterized by € and ¢ different from their free space values, a nre-

l_r.ugation constant k may be defined as

e
An underlined symbol denotes a vector and a caret denntes a unit vector.

-

L 5
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k=wfom . (2-3)
Similarly, if the conductivity s is non-zero, the propagation constant can pe taken as

k=umle+s) . (2-9)
It is convenient to have the center ot the sphere cuincide with the origin of the coor-
dinate system. This detracts sonc of the generality and permits the use of spucrical

polar coordinates (r 6, @) where

%=r sinf cos®, y=rsin®sinf, and z=rcosh, i2-5
in terms of which the surface of the sphere is simrl: 1 = 2 {see Figure 2-1).

The free space, source free, Maxwell equations are

o M-

.E i}
VaB-c —= =0, iz-v

V- H=V- E=0 .

After suppressing the harmonic time variation these equations require that all field

lquantities exterior to the sphere I solutions of the vector wave cquation,
IA(VaF)=k*F , (2-7)

-were Fecanbe Ei . I_'Zs. ﬁi or gs . Interior to the sphere, Eand H must sati«fy
VAV F)=KF, (2-5

where k, is the propagation coastant for the mmaterial comprising the sphere,

6 J
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FIGURE 2-i: SPHERE GEOMETRY
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The boundary concitions are really continuity conditions at the surface of the sphere, L. e.,

r=a” (2“9)

General solutions of the vector wave equation can be generated by vector

operations on the solutions of the scalar wave equaticn

(V2+k¥) ¢ =0, (2-10)

in the following way. I ¢ is z solution of cgniz-10) then the three vectors

L -V

M =YL(ry) (2-11)
x-lg

L"kvh‘_! ’

are orthogonal solutions of eqn {(2-7). These are known as Hansen's vector wave
functio..., aaving been proposed by Hansen (1935. 1916, 193?} in his work on radiation
from antennas, They are discussed more fully by S-ratton [lsfigand Senior E;IQGL;} -
Since field quanuties are required by Maxwell's equations 1o be solenoidal,
or divergence free, the fact that

V- L=Fe=-Ky+0 , (2-12)

shows that only the M and N vectors can be involved in their representation.
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The appropriate scalar wave function ¢ will differ depending on whether the
field point lies inside or outside thr sphere. The two forms are dictated by the
requizements that the field remain finite at ine origin and that the scattered field
obev a radiation condiiion at infinity.

Thus, within the body,

. m cos X
vz ’n(k’r)pn {cos e)sin mn@, (2-13)

whilst for the exterior region m cos
L = hn(k !'E)Pn {cos 8} si; m@, (2-14)

where P:f is the associated Legendre function defined in texins of the hypergeo-

m

etric funct =
metric functiva as m, . {_-I)m,_ x\: . X *
pn W= r(l_m-é 1-x 2101, H‘H,.'m, 3 }

and jn and hn are the spherical Bessel and Hanke! functions vespertively defined by

. x_ \ NN A () ) =
,z(x){; 3,1t hn{x;-wlzx oy @ . (2-15)
The use of the Hankel function of the first kind to represent outgoing wavros at infinity
~fut

is necessitated Ly the assumed time deperdence, e . Since the field must be
continvous and single-valued throughout the region external to the sphere, mandn
can take an only integral valves.

If the expression for ¢ given in egn {2-13) is now intreducad into the

eqns {2-11) defining the vector wave functions L, M, and N, these functions take

r—-——_
This is consistent with Stration {i1941) but differs by (-1)™ from most standar!
r:athematical works.

w
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the followi ing forn::

L“) =kj "Er)P™ (cos G)C?smé ? +1 J ko) ,—d" Pm{cosa)e?smﬁ é‘
“e o n n sin rn 5 'n sin
c
- _m P 1 sin 2
+ [sind 3n€3sriPn (cose)cosmﬁﬁ .
:g:“ = ;M Ger)P? {ma)s‘" mp 8- (kr)——-P”‘(ma) “mé '
mn
4]

NV n(m'-l)

3 3P 03600 g ¢ e ) fz:;-}} o T icos 0 5mg §
=g kr
mn
<
- krj a..;] p”‘feoss)s’“ 'Y
+ \ram(i L 4
{2-15)
wiere the prires indicate differentiation with respect to kr, the subsers < and

o are short for “vvia™ and “odd™ respectively and refer to the ¢ dependence of the
characteristic solution ¢ , and the superseript (1) denotes the radial function used.
The supe.:-<ript {2} will be used to denote the funev~us ritained if jn(kr) is replaced
b k_{kr) aud {3) will be used if j,{ke) is replaced by 3 ).

Since the field quantitics are solenoidal the most general expression for the

pcatlered clzctric field is

<O s 1]
rd
E:-¥ g g TR x@ {2-17
= [+ L e "€
m=0 n=o Omu 0!!'lrl Omn omn

iy
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where the coefficients A and Be inTo! . only the pr-:uzation constants k
g ran omn
and k; and the sphere radius, a . From Maxweli's e *2a 5 (2-6), it is scen then

that

D,
H: .iW Z S (B g‘z’ +A _1\_%(2) Vo, (2-18)
- o © e € <

= oma

m=0 mn mn mn
o o o

where the coelficients in this equation arc the same as in eqn{2-17).

Similarly, the most general expressions for the fields within the sphere

Hr<a), are
1.4 -
E-E «, a_;is’ A T (2-19)
m=¢ -0 mn c “rin :;mn
and
E k;
g 2— 50 Y 3P 39 (2-20)
B: &b 73 “mn “on “man “mn
o ) o o

where the constants Ce and De again involve only the propagation constants
mn oM

o

and radius.
Fr+ the incident field given by eqn {2-1), expansions in {crnis of vector wave
F‘unctions are given in Stratton [1941] as

i+ « § -
i n 2ot 4D (D)
E=E, (’Ttﬁ 07 (o {goin N ) (2-21)

i1
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2o+l : 7
v o-in f: G ——= (0 i el ) (2-22)

No terms corresponding tc n=0 occ.ir because P(; {cos 8) = 0.

Straightforward substitution of eqns (2-17) iv (2-22) in the continuity relations

2-9} now leads to the following values for the unknown coeificients:
AY = =C =D =0, forall mand n,
ema Omun TMmn omn
A zB =C =D =0,form#landalln.
omn ¢mn omn c<mh

A =" 2+l “oin(h{kga‘én(k:gﬂ ."I'ii‘-(kla, [ﬁaiﬁ{k&g
E, ) 3 il j i
oln n{n+1) #y 3 el {;‘3 hn(ka,] '#ohn(ka}{kﬁ;ﬁ{k::g

-3

& gin(i:;ai[;;a fn(kna . -{é‘}. P ;ni.i:ﬁ {gﬂ in(“:a )} '

£ ]

(Nt 2n#d

B =(-1 _ :
el n{n+l) o ST A
eln yQin{kga} ‘.’“‘hn(h'i '"‘(Exf nn(i;ségkza(,n,_kﬁ)j

o - " (24D o,
ﬂi + - . = . 'y - . - ‘i
k)b (ol O] -y 5 a0 [Ra ka) }

o - )" o) o Ky 2
ﬁi. ¥4 3 " P . 1 *
I st gtialn (kallionj thial] - (lals g2 [kab (ka) }

iion with respect 1o Ka or k;a as aprropriate.

where the prime dencies differentia

The situation is considerably simpler in the imporiant case when ‘1w con-

Kuctivity of the sphere becomes infinite {(Im k> ).  The continuity conditian

- gn {2-8} s then replaced by the boundary condition
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Ta. =0 , (2-23)
r=a

since no ficlds can cxist within tie swsere, and muking use of the asympiatic forms

of the spherical Bessel and Kanke! functions, the coefficienis in cgus (2-23) become,
A =" 2L _}5_&_3_)
“oln ' nln+l) hn{ka)

kaj (ka)l
£—- n_J (2-25)

;.nﬂ. 20+l
'e -

Tin y i 1
o{n+1) Lkaha{ka!

2.2 Txe Mic Series For Two Concentric Adioining Spheres

The more complicated probics resslting when the sphere is not homogZeneous
!b‘ét consists of a homogencaus sphere covered with 2 homegoneous layer of different
material, has been soived by Aden and Kerker (1952 . The geometry is essentiatly
the same 23 piciured in Figure 2-1, except for the addition of a surface layer of
thickness d, andthis is shown in Figure 2-2wherceths _ »¢3tive x-axis and incident E
lfiéid point out of the page.

Coasister:t with the notation of the previous section, the inner sphere of
fradius a will be characlerized by k,, €4, ;. 531 the layer vy ka, €3, p3, Sa.

['xi the whole spherical structute of radius b = a+d %ill be Imbedded ir ‘rec

pace ciarsclerized by &, €, and g, .

13
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FIGURE 2-2:

In each region the representations of the field quantities are different. For

the inner sphere and for free space, the representations are similar to those used

in section 2.1, viz

r>b

=g+g®  H=ph+H®

. M
iy S P 2l D (D) x;“* n 2+l (1) D)
= > - = +

E hoﬁ 0" 2 ¢ lf)ln+1 N , H! mv B Ul ver —rp M NG

E%:E ) (A M2 +p N gt (B_ M(Z) _(2) (2-26)*
o L olr. n el oln

Fur convenience the coefficir nts are written An' Bn' etc., rather than &

, ete.
eln

14 ——
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r<a
E k
= \J Z - — N’ )
EE Z (C M) +D KO3, B o ! D MY + c ¥y, e

while in the layer a<r<b

E<E z:a M(-x) \a) g {4 @Nﬁ) ’

cln oln —eln n —eln
(2-28)
E k
. o2 - (4) (5) ,\4) (5)
= - + +
H=-i Wi 5 i ‘M gyeln ﬁ '

n=}

where the superscripts on the wave functions indicate the radial functicre which

(1) (1)

occur. Thus M"™" and N' ', defined in egn (2-16), ~-ntain the radial function

(2) (2)

jn(kr). If this is replaced by h (kr) M™ and N result. Similariy, replacing

jn(kr) by Jn(kxl’) vields M(S) and N(B); replacing jn(kr) by jn(kzr) yieids M(4) and I_\'(‘”,
(5)

and by h (k-r) gives M and K x0 ). The continuity relations require £ AE and
# a H tobe contintious 2 the interfacesr=aandr = b, This provides a sufficient
numbe- of equations to determine the unknown coefficienta, of which onjy A and

Bn’ the coefficients of the scattered ficld, are presented here. They arc
o om0V +[!\b (kb)} £

- ¢
ni{n+1) bn(kb)f1+Lkb h ! kb] f,

A = ~(-i)
n

, (2-29)
- i) {1 (kb)_] £,
'( i

n{n+1) h (kb) f +[kbh (ka f ’

15  N———
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where j (l\la)

= {l\zb j kb)) frpah Gl - - [k -;n(kza)]' fiab h"(kab)]'}

2
!-[M{jn(kza) [kzb hn(kzb)J"'hn(kza){kzb jn(kgb)}} '

Hi M2
i (1\1 a)
o {[kza j (kzag h (kpb)- [kzah (kza] i (kzbi}

[kln i Gy a)l
S — {J"(kzb) hn(kza)'jn(kza) hn(kzb)} ’

HoHy

Ly ﬁzik? [kla j n(k,aﬂ' {jn(k;,;a) [kzb hn<k2b]'-hn(k2a) [kzb ,-n(kzb))‘}
(o)

kz . A t 1 . \J . ]
o )n(kla){[kgb Jn(kzbj fiean (c.a) - s 3, ()] fie nnckzbj } .
2
};2 [l (kal { 5 Gebih () (k,ah ( b)}
£ K 3 [ kiad (kall 1, (kblh (kea)-j (kalh (K,
i (ka) (e
+ -“—l-——- ~uk2a j (koa)) k (k-.b) [Lzah (kza j (kzb)} . (2-30)

Scharfman (1954J considered the limiting case when the inner sphere becomcs per-
fectly conducting and the continuity condition at this interface is rcplaced by the
Iboundary condition eqn (2-24). The expressions (2-29) for the coefficients or the

scattered field are still valid but the f's defined by (2-30) sumplify as foilows-

16 =
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—
i

, ;1- t RC hn(kgbj.-hn(kga) = jn(kzba'}

[

)
"

“0 { ]n(l\zb) hn(k_)_a)"] n(]\za)hn(l\zb)}

[,- J:_ ( ;f—)z {(kzb jn(k,,b)]'[kza hn(kzaﬂ'- [t jn(kzaj' [kzi.. :-."(k,,b)}'}

>
F |

{hn(kgb) [kga jn(kga)) -j, (kpb) [kza hn(k,a;]} . (2-31)

2.3 The Mie Series For Two Concentric Disjoint Snheres

When the inner redius of the layer is larger tuan the radius of the inner
sphere, i.e. a plane wave is incident upon a sphere with two layers of different

material upon it (sec Figure 2-3), the problem is even more comglicaicd.

Plonus [1961] has treatcd this problemn, though not in complete generality,
;The problemn is speeiatizc i in the following ways: 1) the inner sphere of radius a
is perfediiv conducting; 2) the two regions a ¢ r<b and r >c consist of the same
hnaterial (here taken as free space and characterized by k, €,, and uo), and

3) the permeability of the layer b< r< ¢ is also taken to be u, although the propagatioxn
constant k, is different from k. The procedure is exactly thr same az before. There
inll be three representations of the field in the three regions, two continuity con-

dit.ons (at r=b and r=c) and one boundasy condition (at r=a).

17
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H =~
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FIGURE 2-3
Thus for,

rze i s i S
E=E'+E®, and H=H'+H

where the quantities are exactly as defined in eqns (2-2F)

c>r>h

E and H are given by eqns (2-28) with up=u,

18
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b>r>a

. (1) (2) A1} + 8 ( )
£ 'Eo ni; on M +H “oln+ 72 \eln “n = eln :

-iE k
= —> Z: 7,\(1)4_5 M g Vg B (2-32)

upo n —eln n o n n"'-ln

At the interfaces (r=b and r=c), f,,g. and © A H must he continuous and
T AE =0 . These conditions provide a sufficient number of equations to deter-
mine the unknown coefficients. Again only the coefficients of the scatterzd field,

A and B are presented here:
o +t N
J kel ke 3 .} J 2

A= ()" 2ntl
“n T nln#1)
n n{n hn(kc)r1+[kc hn(kc)J i
(2-33)
j (ke +[’c j (ko)]'f
B =+t 2t a3 TN g
n

n{n+1) X '
h (Ko, + [kc hn(kc)] £,

where

- fie jnl.kzc)]' {:hnika)(hn(kzh) [k jn(km] '-jn(kb)[kzb hn(kgbﬂ)

-jn{ka)(hn(kzb)[kb hn(kbi hrtib)icp hn(kebg )}
-{kzc hn(k,c] { h (ka) (jn(kzb) [_kb i, ), (ko) [}:gb jn(kgb))')

-jn(ka)\ j, b [kb 'nn(kb)]' -h, (kb) ]'_kzb jn(x\.\ﬂ}

19
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f,e ,in(ka){ j_~(k2c){ h (k»,b){kbh (kbﬂ'-b (P.b)[l;zbh (kzbff)
-k (}zt) ‘1\20 {30‘1 (khj -h (kb)lkzb,; ().zb) )}
_hn(ka){k j (hec) (hn(k_,_b) [kb ,n(kb)] - (Kb kb hﬂ(kzb)] )

-1,n(k£c)(,§n(kzb){!fbjn(kb)] -5n(kb){!&hjn(kzl:)}')} ,

[ka j Gl {[kzc 5 (g0 ( kz) h (kb [l (b)) -h (oo (kb])
-[kzchn(xzc ( (‘_(ko_) hn(kb) lkzbjn(kzb)] -jn(kzb) [kb hn(kb')}}}
~[an, (kaﬁ'{[kzcj (kac ((‘-‘ ¥; (kbbh (k,bﬂ'-n (kzb)ﬁcbj (kb)]')
[kzch (kye (( Y; (kb) kzb, (kzb)l . (kzb)ﬁdn (kb /}

£ ;n{};zc:-{r [ b (ke)] t:_sn(kb) ) hn(k,bg'—"\':z%)z I ;n(kbj')
[ka jn(ka)]' (hn(kb)[k,b hn(kzb)]' -(-Eﬂz hn(kzb{kb hn(kbj)}
] (i, -2 1 s, 07

o (s 0] o, ).
(2-34)

When b=a, these expressions o over to those given in equs (2-31) fo~ B o=u,

20 ——
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2.4 The Far Field Amplitude

Of particular interest is the far field or far zone behavior of the scattered
field. Recall that the scattered field (exterior to the spherz and any layers) is

always written as

g5 a M2+ 82y |
- °n= n—oln u~—eln

(2-35)
u% -in E (B_ m? .4 8@,
= o e —eln n oln

where the An and Bn arc given by eqns (2-23)  (2-2%], (2-29), or (2-33) depending
on which particular sphere problem is being considered. Regaidless of how these
coelficients are defined the expressions for the wave functions M and N can be
simplified in the far field of the sphere and its layers (if any). Specitically the
spherical Hankel functions contained in the expresstons for M and N can be re-
placed by ihe {irst terms in their asymptotic oxpansion for large argument and

since
ikr

B kedn-)™ ! E— i o i ] (2-36)
n kr

the 6 and @ components of both M and N are of equal ordar for give n. By cou-

parison, tne radial component of N is of cne higher order. Consequently, oniy

ti:e 9 and @ components can appear in the far field which then has the form of a

21 —
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spherically outgoing wave, and from egns (2.16), (2.35), and (2. 36)

s e 41 ( p! (~osO) 5 n
E ~E — (-1) A +:Bn %0 P:l(cose)) cos @ 6

nwla

( & Pcos6)+iB_ S s 8t (2-37

valid for r»» kc?, where c is the radius of the entire sphberical structure with c=a
for 2 homogeneous sphere.
This result simplifi-s considerably for scattering in the hack and forward

directions. For backscattering (6 = 0),

i
['Pn {cos 0) nlot) 3 .
[ simn® == =% Pn(cose) .
s A=p 6=0
giving .
S ..a 2’“ Antl n{ntl)
E~ - .

fad

(A +iB ) , {2-38)
n n

and for forward scattering (0 = 7)

Pl {cos 0) .
+1 nlntl) | O i .
[ sin @ ]6 -1 2 @ [Pn(cosﬂ}] o
=x 9=7

»0 that ©
e -eﬂ(r y_' nr-1 nin+l)
E~ER-"— [/, 1 g (A-iB ). (2-39)
n=1 .

W
t
L
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It is now convenient to introduce the concept of a scattering function K6, @).
This will be defined by the equation

ikr
s

e ] R
E~E 16,97, (2-40)

A .. . I3 A
valid for r>»ke®, where? is a unit vector in the direction of E™  and accordingly
{8, can be regarded as the [ar Jeld amplitude.  From Maxwell's equation we

then have ikr
FS
T IR LR (2-41)

and consequently the same function describes both the electric and magnetic fields.
For scattering in the backward direction, the scatiering function will be writien as
(), sincc there is no dependence on @, and eqn (2-38) then gives

fln)= (-1

g:

+1),
ol nlodihos gy L (2-12)
2 n n

Similarly, for scottering in the forward direction,

ﬂr).—.i i";-1 i;i‘!l (A -iB_“) R (2-43)
o . b

{see eqn (2-39) ).
The definition of f{8, §) given in eqn (2-40) differs from that ususlly adopted.
‘The function {/k correspords to the scattering tunction more commoniy defined, but

wis has the disadvantage of not being dimensionless. In electromarnetic theory

23 ~—d
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(and, indeed, in all branches of physical scienee} there seens o be everv advan-
tage auached to usiag a non-dimensional function, and it is for this reason that
the present definition has been chosen in spite of the fact that it represents a
break from conveniional notation. As defired above, the function [ is independent
of r and can be likened to a polar diagram factor. It dcpends o'y on angular
variables 0 and § and on the properties of the scatlering body, and is sufficient 19
specify the far field in its entirety.

It is a simple matier to calculate the scattering cross section in terms of

the function f. The differential cross seciion or histatic radar cross section o{6, )

is defined by
. s z
oto,g)= 1" 4z 2 [—i (2-44)
r--m E
and hence, irom eqn {(2-40},
ol 9= 35 lwa. gl . (2-15)
An ai*vraative expression is
l 2 ‘2
olo. 9 - |no.gy (2-16)

where X is the waveicagth, and the dimensions of o are here made exrlicit.

The total scatiering cross section or is related to o{0, §; by the ecuation

0.2 4% / de.fd 2-47

where Q2 is an element of solid angle, and by inserting eqn(2-45) we now have

24




THE UNIVERSITY OF MICHIGAN -
3648-1-T

o i j [n‘e,w{z e . (2-18)

An additional relation between or and { is provided by the "“forward
scattering theorem™. This was first discovered in atomic theory and since then
its clectromagnetic equivalent has received a variely of indepundent proofs (see ,

for example, Schiff [195.9 , Jones ﬁsss} , and de Hoop [195§ ). The theorem is

merely an expression of conservation of energy and leads to the equation
6= Im. itx) (2-49)
T 2 : ’

where Im. denotes the imaginary part. In addition i the scattering function and
cross scction defined above there exist many quautiu<s in the literature with
similar names tut different d=finitions. This urfcrturate situation is virtually
uncorrectable at this stage and the best one can do is exercise care in checking
aefinitions and be rexigned to the fuct that many existing results may require
renormalizatian befure use. Some of the more common quantities are presented
here.

If the scattered far field is written

» {2-50)

where E, and Eé are defi ed in «yn (2-37), then e~ compunents can be expressed

in ihz form
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s eikr
= E = cos{ S)(6) ,
8 o kr (2-51)
s eikr
E¢ = -Eo T sing s{6) .

where 5,(6) and S,(9) are defined by referring to eqn {2-37) and are called the
complex amplitudes of the scattered radiation for the two poiarjzations,

The squares of the absolute values of S, and S, are called the intensities of
scattered radiation for the two polarizations.

The absorption cross section ¢_ and the scattering cross section o_are

a
defined as Pa
P {2-52)
i
P
S =
°=p {2-33)

where Pa is the nower absorbed by the ohstacle, Ps the power scattered, and Pi
the power incident. If no power is absorbed in the obstacle and the surrounding
medium is non-dissipative {e. g. free space), then G, i5 the same as op defined
above,

The sum o, is known as the extinction cross section and in cases where

o is non zero q{2-4Y), the forward scattering theorem must be altered to read
<

. 4 - =
Ua~ as‘ kz Im. {‘-) - {2 :’4,

- -
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The various cross secctions defined, i.e. differential scattering, toai

scattering, absorption, and extinction are relerred to as efficiencies when nor-

malized to the gecmetric cross section whick, for a sphere of radius a, is = a2
o +5
Thus a_
Q=—_ 2%

is the extinction efiiciency, ctc.

2.5 Computations

Kerker }955 summarized the then available Mie theory functions and his
table is reproduced here for convenience (Table I-1). To this has been zdded
the work of Scharfman {1954_] which gives the back scattering cruss sections of
various dielectric coated spheres. Also appended are the highly acourate isbles
of the back scatiering function () for perfectly conducting spaeres presented
by Hey, et al [1555} .

The recent work »f vande Hulst [;95';:] is an excellent suramary of work on
scati~=ing by spheres. Chapters 9-14 of this work are of particular interest o
this study since they contain many tables of caleulated quantities as well as a list
of references containing other tabulated quantitics. Tablc II-2 presents a brief
listing of the tables given by vande Hulst. Table 1I-3 i3 a similar listing »f the

eraphs to be found in vande Hulst's volume.
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TABLE [I-1: LIST OF AVAILABLE MIE THEORY FUNCTIONS

THE UNIVERSITY

3648-1-T

QF

MICHIGAN

Index of Valuee of
» t) A H .
Reference Refraction™ Ka Quantity Calculated
Shoulejkin @92}] 1.32 1,3, Scattering functions every 20°
}_31um_er [@92:’3} R 1.25 0.4,0.6,1.6,4,8 Scattering functions every 100
{1931 133 13,3
- 1.5 4
joo] 0.1,0.5,1,3,3,10
Stratton and
Houghton [193ﬂ 1.33 0~-40 Scattering coefficient
Caspersson [1932] 1.63 0.71-3.16 chtteri%gfunctions at Oo, 450,
f1933) 156 (17 values) 90°, 135°, and 180°
90

Gumpricht, Sung, Chin,

and Sliepcevich E952] 1.33 6, 8,10-35(5) Scattering functions every 10O
Gumpricht arqd 1.33 20, 30, 40, 6C. 80 Scatterins coefficient
Sliepcevich ,_1955] 100, 200, 400

1.44 20, 80,150

1.20 20,80
Kerker and Perlee 2.00 1.30-2.80 Scattering functions at 90°

|_1953J

{12 valuesnot in
Lowan tables)

Kerker and Cox ES:’):’) 2.00

3.0-5.2 (il values not

in Lowan tables _

Engclhard and

0.4,1,1.5,2,25,3,

Scattering functions at 130°

Scattering functions every 10°

Freiss (19371 1.44 4,58 _
Paranjpe, Naik, and 1.33 4,5,6,7,8,9,10,12, Scattering fun:.ions every 10°
Vaidva [1939] 20, 3G B
Kuedy f1943:! I}944] 1.33  1/8,1/4,3/8,1/2, Scattering coefiicient

- 3/4,1

(centinued or next page)

.’—‘—————— €y My 101y
Index of refraction m = '_—‘;" "";é ;"
“ofe v o
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TABLE II-1 (continued)
Index of Valucs of
Wors A 1 )
Reference Refraction Ka Quantity Calculated
Houghton and Scaitering coefficient
Chalker 1949 1.33 7-24 (33 values)
Lowan 1u48 1.33 0.5-6.0 (15 values) Scattering functions every
1.44 100 and .cattering cocfficient
1.50
2.00
4.21 - 2.,51i  0.100-1.00(.03) Extinction coefficient
1.0-3.0(.1) .
5.55- 2.85i  0.10-1.60(.05) Extinetion coefficient
1.0-2.0(.1)

8.18 - 1.96i

0.100-1.00(.025)

Extinction coefficient

.41 - 1.94i

0.10-1.006(.C5)
1.0-5.6(.1)

Extinction cocfficicnt and
An and B

"7.21 - 2.651

0.1000-1.000(.025)
1.00-1.30(.05)

Extinction coefficient

8.90 -.69i  €.10-0.30(.01) Extinction coe ficient and
0.300-0.430{.005) A and B
0.43-0.60(.01) r_°t
Riley 1949 1.486 0.5-3.0(.1) Scattering functions every
i 10° and scattering coefiicients
Aden 1950 2.01-0. .31 0.6-60 Scattering functions at 0°
o8] 0.6-6.0
Gumpricn: and 1.20 1-6(1) . and B
Sliepcevich 1.40 8 n
1951 1.50 10-100(5)
1.60 100-200(10)
200-400(50)
1.33 4,5,6,8
1.74 10-100{5)
100-200(10)
_ 200-400(50) -

{continued on next page)
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TABLE II-1 {continued)
Index of Values of
A€ - s Caler
Reference Refraction ka Quantity Calculated
Kerker, 0.126 Backscattering by particle con-
Langleben_and sisting «. twoconcentric spheres.
Gunn [195} Inner sphere m=1.75, outer spherq
m=8.8-1.51
Scharfman [1954] 1.26 Backscattering by logsless dielec-
tric coated perfectly conducting
sphere. Ouler spherel. 6¢m{w .
+
Hey, Stewart, Pingon of.oN10 Backscattering funciion {0).

and Prince (-195

+
The actual guantity tabulated is {2, rot f as listed at head »f each column

{see Hey and Senior '_1958 ).

TABLE II-2: PARTIAL LISTING OF TABLES Tu BE FOUND IN VAN DE H?J'ItST ]
1957

Refractive Page

Inde.. »- 2ra/) No. Quantity Calculated

© d.11.6

1.8-90 161 Eificiency factor -

.8, .93,11’6 Maxima and minima of the extinction

1.33,1.5, 2 - 178 curve.

m close to 1 - 180 Extinetion and ubsorption by partially
absorbing spheres.

covaplex - 273-274 Complex values of m for vhich compu‘a-
tions have beer made.

3.41-1.94i Extinction coefficient and intensity

7.20-2.65i,00 __ 1.3 21 functions. .

1.50-in* .5-7.0 295 Extinction by spheres.

(n' small) . .
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TABLE II-3: PARTIAL LISTING QF GRAPHICAL PRESENTATIONS OF DATA IN
VAN DT HULST [1957)
Refractive
Index, m 2raf\ Page No. Content
2 0-4 137 Phase angle vs 27a/) _
2 0-1e 151 Extinction curves of sphere
1.55
1.5
1.44
1133
1.25
2 1-6 152-153 Scattering diagrams
1.55 1-6
1.33 1-5
1.50 1.2-3.4
(¢ ] 0-3 162 Effici-- .oy factors for extinction and for
radiation pressure.
fo) 12-10 163 Scattering diagrams. _
1.5 0N-20 177 Ext:nction curves cotinjuted from Mie's
1.33 formula.
1t ¢
.92
$1.33 10 236 Secattering diagramns.
P1.33 30,35,40 _260 Intensity distribution.
1.27-1.37 ¢2 276 Efficiency factor for extinction, radiation
. pressure, absorptier and_scattering.
1.29(1-%) 0-20 278 Variation of extinction curves if the
imagirary pu~tof the refractive index is
varied.
3.9-. 69i 215 283 Extinction curves (showing resonance
8.18-1.96i reaxs)
(1)
w 0-s 285 Radar cross section o computed for
3.41-1 94§ backscattering by wate: drops at
A =3mim. e
31
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Some representative bistatic cross section curves for a perfecily conducting
sphere are included here (Figures 2-4 through 2-20) to indicate the behavior of the
sphere as a scatterer. These were computed at Air Force Cambridge Research
Laboratories and appear in King and Wu [IQSS;J . The back scattering cross section
Jas a function of ka tor the perfectly conduciing sphere is aiso given, Figure 2-21.

This was plotted from the tables of Hey et al ﬁ956] .
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FIGURE 2-21 : BACKSCATTERING CROSS SECTION FOR PERFECTLY
CONDUCTING SPHERE
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LOW FREQUENCIES

At low frequencies the scaitering function £(9, ) can be . panded in series
of aseending {positive) powcrs of k with coefficients which are functions of @ 2nd §.
Asscoiated with each power of k is the corresponding power of a parameter /{
having the dimensions of length, and since (0, #) is independent of r, this parameter
must be a characteristic of the scattering body It is obvious that in the case of a
sphere the parameter is the radius. For sufficiently small values cf k£ this expan-
sion is absclutely convergent {(a fuller discussion cf the convergence properties is
given in section 3.4), and is generally referred to sz the Rayleigh scries for the
wody in question.

The present section is satirely concerned with this expansion, and the
purpose is not only ‘o dr* rmine the form of the series (i.e. the powers of k which
it conta: =}, but also the precise coefficients of the various powers

In section 3.1 the series is obtained dirsctly from the Mie soltion by ex-
panding for small arjjument the spherica! Bessel and Hankel functions accurring in
the solution. Ia so doing the aim was to sot down explinitly a significaat nur:ter of
terms in iie expansion, and presented kere are e first five terms in the expnasion
fo': the real part of £(6, f), together with the first four terms in the exgansion frr

the imaginary part. The resulting expression for the scattering fur.ction then
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includes terms inp ~, wheres = ka.

In seccion 2. 2 an alternative method :s developed whereby ihe Rayleigh
series is obtained direcily without any reference 1o the Mie solittion, and withow
ever having to solve u boundavy value proliem as such  Therz is no limil o the
number of terms which can be calculated in this way, and while the derivation of
the higher order terms can become tedious, *=e labour i3 5s worse than that
invoived in the expansion of the Mie coefiicients. In addition. ihe caleuiation is
partially self-checking.

One of the main advantages of this new appruach is the promise whiz: ¥t
nolds of being applicable to siher (z2nd more generzi) Lodies for which the exact
Mie-type solution is not available, but evex with 2 spherically siratified sphere it
may be quicker to use this method te obtzin the {irst few terms in the Rayleigh
series, and ia sention 3.3 the leuding tern. for a dielectric coated sphere ic
calculateu.

2.1 Derivation from the Mie Series

Since tne exact solution for the sphere is known in the for:. of the Mie
series it is only necessary to expand the radial functionz for smail o io olstain the
Ravieigh seres.

The coefficients of the vector wave functions for a perfectly ec dveliny

sphere are given in egns (2-23), and usisg the fact that

[y
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n . - (_%)Zm
Py s JTE— E -y = (3-3)
! ik &= m' (m+n+—;-):
W m 2m
an = ()% e} m,p,zm
FoA-Y 2 gl T
o+l

h O = It
a N ™ oo m!(ectn5)

we have immediately

 Aon ’1? 3(“% R T N *3 27 P “i;s P
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The above expansions are sufficiest 1o specify £ (6, §) correct 1o O(pl"),

but rather than write down the resulting series for arbitrary 8 and § we shall

concenir lie un the particular cases of back 2nd forward scattering (6 = Qand x

respectively). Substitution into 2qns (2-42) and .45} then gives

3 3

3 2 17T 4 6651923 6 240170261 8
HO) = - i  d1-Fmpr e —— % _ 20ol¥ed B P
2 ¥ 2 7 7 900 ¥ T 7938000 ° ~1875352500

\-——v-.d

|

-

- + oY {3-3.
2258 8 6804 4 L ) KEXY

+_}5i9611+_§_ 2 _ 1951 4 575 6
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U3 z 13 4 Ei057 5 8368335137 3l
"o0 f “2100 P " 7o38c0 P~ 68762523560 ° J

5.6),,6 2 2137 4 56639
ETE 500 P T 56100 P

61 0P G-
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3.2 The Alternative Meihod

in order to illustrate the ierr-by-term technique for deriving the low
frequency expansioa it is convenient 1o consider once again the problem of 1hz field
{eq.s (2-1} ) incident on a perfectly comducting sphere,

The first step is 10 postulaie a general cxr-_ssion for the scaitered field
and the obvious form is that shown in eqn (2-35). Each of the vector wave

fanctions 3_10 In and N involves the radial distance r through sthe Hankel function

-

hn('izr) and its derivatives with respect to kr, ana consequentiy any power of © is

always accompanied vy a like cower o1 K. Near to the surface of ihe sphere r ~2,

LT T

and for su=flicientsy swall values of kr (that is, for swiiiciently low frequencies)

i {2a) k1 ' )
hikr) ~ - - ~ - - [krh (‘xr)] {(3-2)
2 {kr)nﬂ 2%nr n W "

As a result, all the components of §e are of equal order in the near field {in

In
vomrast to sheir behavior in the for fiel}, whilc ihe compunents of B_ioln for the
¥ same value of n are of one higher order If, therefore, the product Bel! ;e“ s

2 remain finite in the ncar fieid as the frequency decreases indefinitely, it is
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necessary tkat
3
Bk

and since Be is dimet.sionless, k must be associated with s length parameter

11

which ean only be the radins of the sphere. Hence Be : 0 (p°) for small p, and

11
from a consideration of the higher powers of kr ir the expansion of —;—;— [kr hn (kr)J'

for small kr we are led o write

3 2 3
Belx =p (,Bm+ an 0 312 + p 313 ... ). (3-6)
Similarly
5,. 2 3
Belz = p (p20 + me +p 1322 +9 [323 L ) 3-1

and s0 cn. Any of the above coefficients may, of course, be zero.

Foxr the product Ao . Moln a like analysis would suggest that the expausion

}

2 .
for Ann chould start with a texrm in g, Lut by choosing instess the exprassion for

the magnetic field neax to the surface (so that Ao’ oczurs in combination with Eoli)

1
it is scen that the coefficient of ,p2 is in fact zero Wre therefore take

3 2 3 N
Aoll = p (um+mu+p At P Hat ) {(3-3)

analogoeus to equaiion (3- 6), and similarly

5 . 2 3 i
(‘”zo PPy TP Gyt B gt » o-9)

<

Aolz - P

etc.
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At the surface r = a the boundary conditions require the varishing of the
tanzential components cf the total eleciric field, and substituting the expressions

. i 8
for E and E', we have

~0, j ( P cos b
X+ 2 A" ) 7 P ‘°°S">*< R G0 o B
L
(3-10)
and
P (cosi))
. {, o )
Xcos 6+ 2‘; \ oln n(o)/ cos @ c’q 0 [ph (p):] n(cuse) =0,
(3-11)
: where
X = -zpcos(l - i; \-xgcosd) ] (3-12)

1 el .
Since the expansions for* n(p) and Py [p hn i | ave known, the ceefficients aij and
Bii in t! = expansions far the Aon and Ben can now be determined by enquating to zevn
the coefficients of each power ¢f p in equatione (3-1C) and (3-31).

In both equations the lowest vower cf ¢ ic p° and the coefficient ie made up

of a contribution from the single ve:for wave furction N .. and the static teri in

ell
the incident field expansion. To this order in p the two houndary conditions refuce

to

$rig,} - 0

(42}
3
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and

1+ ‘Bm) cos §=0

giving

The second stage in the analysis involves the terms in i, Contributions
from the two furtner wave functions M " and §e12 are now introduced, together
(V)
with a contribution from }{e NG and are matched to the second term in the incidem

field e¥nansion. We have

-icosf ~ ia‘ocose + iBn +13 iﬁzocos g =0

- PO sa : -
~icos 6 - xam+ 1_«3h cos €+ 18 1;’320003 20 :=0

and by identifying cuefficients of like trigonometrical functions in each equation, it

is found that
- . - 1 .
By = & %10 7 Boo © 36

Continuing in this manuer the varioue terms in the expansions of the th
and Be!n can be derived, but since the 2nalysis ig so entirely straight“srward there
is little point in including further stages, Suffice to say that the results are in
accordance with those given in ssciioa 3. 1.

On the other hand, there ars several features of the method which it is

Gesirable to point out. In the first place we remark that the analysis at canh stage
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is to some extext seli-checki.g, in that the rti1 stage provides 2n + 1 se'f-consistent
equaiions from which to calculate 2n-1 unknowns. Moreover, the nth stage {which

brings in contrioutions from the wave functions Mo and §elu) requires that

In-1
"fn-l 1’ 311-3 3’ .3,5_:_5 G cerrereeee
and gy @43 CHIPPRY

all have the value zero, aud therefore introduces no new power af p inte the
expansions for the corresponding coefficients of ihe vector wave functions. In fact,
each stage yields a correction term to the expansion for either Aolr or Bei;- ¢l
but not both, and since Aolr and Belr ara of the same vordar in p, two successive
stages are needed to give a new order of correction to both the: 2 coefficients.

4 further poiait of inierest concerns the real or imaginary character of the

:"ij and the ‘Sij' At every odd slage in the anulysis 20 even power of o is matched

oa v,

to a like power of o in (.- incident field expansion, and from eqn {3-12) it is
| appare.t tiat this implies the inatching of the appropriate & a2ad ;3lj to a real
N -J

coefficient. In contrast, the even stages produce values of @y and 3ij which are

pure imaginary and hence

.. real . : odd
@y is imaginary $(-3) is even
wiereas
real sr £ sy 5. €ven
313 is imaginary it {i-j) is odd
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it now .'ollews that when n is odd all even powers of p in the expansions for Aoln and
iBeIn have real coefficients {odd powers having pure imaginary coefficients), and
the reverse situation holds where n is even. This immediaiely determines the
power of p in the expression for £(, @) which have real or imaginaxy cseificicnts,
and reference toegu (2-37)shows that all even powers must have imaginary
coefficients, while the odd powers have real coefficients. The fact that the first

imaginary coefficient is 0 (ps) is a consequence of the vanishing of a,, and Bll‘

1
vhich thercby removes the p4 powers. These conclusions are confirmed by
eqns (3-3) and (3-4).

Our final remarks concern the initial stages in the analvsis At the first
stage the coefficients of p0 are matched and this requires that the incident field
factor e—ikz be replaced by unity, so that gi and ﬂ:' are indepemicri of one .. 10ther
to this approximation. Moreover, onlv Bel i contrihntes a torm of ardor ;;o, and
conseque iily this first approximation has produced 3 near-field boundary-value
problem in which the electric and magaetic fields are uecoupled. Although the
coupling is re-introduced at the second stage, it may be of interzst to consider
why the initial deco-ipling does not affect the derivation of a complete solution.

The first stage essentially reduces the problem to a static one and gives
only Bm = i, which corresponds to a simple electric dipole. Thus, the fivst siaz-

ignores the magnetic dipole contribution to the scattered field, which contriliution

is of the same order as the eleciric one, and to obtain the eleciric field due to
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the magnetic dipole either of two methods can be adopted. The first of these would
require the corresponding first siage in the solution of the magnetic field problem
and the subsequent use of the field relations to determine the contribution o §s.
In practice, however, this is not necessary in that the second stage in the eolution
of the electric field problem re-introduces the coupling between the electric and
magnetic fields and brings in the magnetic dipole coatribution. Two stages are
therefore necessary to complete the first approximation to the scattered fieid, and
the fact that no magnetic field problem as such has to be considered is a direct
consequence of the symmetry between the exprea~ions for the scattered electric
and magnetic fields in terms of the wave functions L_Ee mn and 1_2 an-
On the other hand, if only the first term in the expansion}or £(6, 9) is
required, it may be more convealent to replace the second stage by the first stage
of the corresponding 1nagnetic dipole analvsis, since this may prove to be a some-
what easicr caleulation {(particularly for bodies other than the simple homogeneous
sphere). ln this case, the whole analysis can be caprussed more concisely.

Taking first the electric dipole problem, the first stage ic :0 match

B N to the unit vector ® at the surface r =a using the boundary condition
RAE'+EH -0,
ard since

?=sin9coci?¢coc&eoc¢3- sin’?,
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consideration of the tangential components of xgeu shows that

b

= —t— i93 for small p.

B
ell 1 '
5oty 0]

For the magnetic dipole problem the corresponding stage is to maich i Aoll Eon

to the unit vector ¥ using the boundary condition
A-@+H) -0
and in like manner this gives

13
Y for small p .

A 3

1
oll ~ 2
o Bl
This completes the analysis for the two near-static problems The electric

dipole makes a direct coatributicn to the scatteres electrie field, and according to

the first:of egns (2-3%) we have

% ~ i E N (3-13)
3 P o—ell”’

Similarly, the magnetic dipole contributes direcuy to tie scattered magnetic field

and from the second of eqas (2-35)

T 1.3 -
f_i ~ - 2 i ‘.G 2&11 » (3 14)

"zom which the elextric field contribution can be founc by using Maxwell's

equaiions. The importance of this derivation lies ir the fact that both {3-14; and
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(3-14) can be obtained by appealing only to statics.

In practice however, the iast step (use of Maxwe..'s equations) can be
avoided by substituting the expressions for Aoll and Bell directly into he first of
eqn (2-35). We then have

s .3 . 1
E o~ Eo(ﬁeu*‘ 2 lL-{oll)’

which represents ihe combined contribution due to the electric and magnetic dipoles,

and the corresponding far field expansion is

E° ~E p3 {(—L'—‘cose)cosﬂa- {: }z-cose)sinﬁa ; (3-15)

3.3 A Dielectric-Coated Sphere

As an example of how the above method is used in a non-triviil problem, we
i shall here derive the leading term in the Rayleigh sclution for a coated sphere
{see secri.n 2.2).

Consider a periectly conducting sphere of . _2::= = which is covered with a
layer of dielectric of thickness d. The permittivity and pzrmeability of the
dielectric are ¢ and u respectively; the conductivity, however, ic zero totherwise
the Rayleigh solution is {':ic same, to the [irst term, 2t f5r & perfectiy conducting
spheze of radius a + d). The whole is iminersed in a homogeneous iso*~cpic mediuwd

which, for simplicity, will be regarded as free space.

63 -




THE UNIVERSITY OF MICHIGAN
36406-i-T

FIGURE 3-1

To determine the Rayleigh solution it is sufficient to solve two static
problems and then match these results to expressions involving spherical vector

wave functions. In the first static problem the incident field is merely
E =EX (3-16)

and ihe task is o obtain the scattered (electrostatic) field which this axeites. The

second problem is analogous in that the incident field is kere
H - -H7F, 3-17

80 "2t 3 magnetostatic field is now involved.

The most general solutions of Laplace's cnation are of the form

®
_ n._m cos
i = r Pn (cos e)sin mp
emn
§ )] .
= ¢t m CO8
e mn T P ( e)sm m §
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and if § is regarded as a static potential, the corresponding field can be found by

taking the gradient. In the region ouiside the sphere the scattered field must be
(2)
expressible in terms of § alon=, but in the dielscirie coating both types of

g mn
potential wiil occur,
Let us take firet the electrasiatic problem in which the ;. ident field is given]

by eqn (3-16). Since

1+
2-v¢
ell
we have immediately that
. tth
- V§ . (3-18)
ell

If E is the 1otal elecivostatic field in free space, sothatE = E - £, and if E
similazly denotes the fieid in the Iayer, the boundary conditions at the dielectrie

interface (r = atd} &

At the surface (r=a} of the perfectly conducticg sphare the only condition is
fAE = 0.

In view of the 8 and P dependence implicit in the expressionfeqn (3-18}jfor
/J
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the incident field, it is apparent that the boundary conditions can be satisfied by

choosing the following expressions for the secondary field:

EE-a9§ {3-19)
) a
g-8vy +cvd (3-20)
ell
where A, B and C are constants 2s yet uzdetermined. The boundiiry conditions now
give
E + A_ Lec+--E
o 3 13
(a+d) (a+d}

N T TR

from wiiis* we obtain

€
3 | b3+2a -——o'(bg-as)
E b i {3-21}

b+2a +2-°-(b—a)

where b = a*d. If ¢ ¢¢a 50 that powers of d/a higher than the first can be

neglected, the expression for A becomes

%
A= -E (a"d)3 (1—3 < —d‘). 3-22)
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which differs from the result for a perfectly couducting sphere of radics zid urly

€
in the presence of the multiplving factor (!- 3 EL -g‘) .

Frem eqns {3-19) and (3-22), the field which is scattered into free space is
- € {2)
s 3 od
= - { ) el ———
E E_ (a+d) (13 - a/v§ .
ell

and the next step is ic match this tc the limit of a non-static soluticn at low

frequeuctes. Since

3 P A
Vé '-—'3—{—2sinr‘;cosg§?!-coseccsﬁa‘-siuﬁ,'?}’

r -

consideration of ihe vector wave functions and N shows that for A>> 1,
-gmn “8 mn

sk

2) 3
! vd ~-ikx,
i eli
and hepces  ig ihe near-static limit

€
R P ]
E = i{E k3 (a-:'d)3 (1-3 -: : {3-23)

- G

P
A"u‘.

u -
The far iicld is now obtainod by inserting the firs’ tarms of the asymptotic expan-

sions of the ragial Hanke! functions for largeiks, znd this gives.

s eikr
E HEU kr

3 o L3
N PR S
k {3?6)(3-6 —

£

o=

, N Vo .
) {cosBcosg S-sind ¢} . £3.24%
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Eqgn (3-24) represents the k3 contribution to the far field arising from the
electric dipole, but it is not the orly contribution of this order. There is in addi-
tion a term produced Ly the magnetic dipole and this is most conveniently obtained
by considering a second siatic problem.

The incident {magnetostatic) field is now

CANET
which can be written as

i (n o o
w=-H vh . (2-25)

and the task is to find the scattered field subjct 12 th2 boundary conditions

o a
-~ L}
nalE n~H
at r = atd, and
A . 1
N TR
at r=a. The fo-m of eyn{3-25) leads us o adopt the following expressions for the
fields:

s o (2)
= Av'§ol!

1 2} o~ {1}
H-89§ +CI¢

Uil

where ‘5 §. and C are constants as yet undetermined, and ine boundary condilions




|

§

-

then give

ahere b=ahd,

This differs
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Q
P B Al T
=}

”
-
.

and ifdd<a,

- H
A=~ (3."".'1_3 (-

(2319

)-

from the resuit

4
tn the presence 4 the meltigying f'xcw-'{ -35"0 :) .
Tae field which is scaitered intc free space 1s now
H
wS._ _© 2)
i (@)’ ‘13"93}? S
a: ¢ by matching o the vector wave functions for A»> r, we have in the n ar-

staiiz iim:t

H, 3

n%i Pk

_)—sx .

3tata) (1-3

(3-258)

(3-27)

for a perfecdy conducting sphere of radius a‘d only
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The corresponding electric vector is, by using Maxwell's equations
s, Ey o3 Sk d)
E= - K@) (13,5 M), (3-29)

and in the far ficld this becomes
ikr 3 3 .
P k(a+d)(.y_g) A s .
EWE S T, (198 i 7)) (cos @ B-cos € cos@ @), (3-30)
The compiete first term in the Rayleigh expansion for the scattercu
electric field is obtained by adding the ~ontributions represented by egns (3-.
and ($-30). The required solution is therefore

1.
inr o

S g 1 ) { a0 d
E -E0 krl‘ (a-Hd) [ ( 3#0 a) (; 3 - )cosGJ cos¢9
( E ) (1—-o i a cosB sing 61 {3-31)

from which the secttering function ca 1 be determined if so desired.

3.4 Convervensc

“~ previously remarked, the Raylcigh series is 2 cenvergent revreseniation
for suificiently sinall values of k£, and inr y applieation of the above results the
actual radius of convergence is then a matter of some importance.

To see how the convergence arises, let us write the gscatter«d elcetric

E> E Z: a (k& f (r,0,9) (3-32)
- [¢] o n i

field in the form

70 ~d



coron

THE UNIVERSL({TY OF MICHIGAN
3648-1-7

where f n(i‘, 4, 8) is a vector function of the coordinates. The series ¢n the vight

hand side is absolutely convergent for ail values of k£, the functions Ln(r' 6, 9}

being beunded as functions of n.  Each a“(k ?) can be expanded in u series of posi-

tive povers of kJ in a neighborhcod of the origin of *we coiaplex k.£ plane, and is

therefore an apalytic funcdon of k4 withiu this region. by rearianging the wirms

in eqn (3-32) we then have a representation for §S as an expansion .. powers of
kZ, vhich cxpansion converges within the least circle of convergence of the
individual a.

If the functions a are now identified wire i coefficients Aoln and BC in

in the vector wave function cxpansion for a perfeetly conaucting sphere, it is a

simple task to determine the appropriate radius of convergence. From eqn (2-25)

it is apparent that the only singuilaritics of tha Ao]n and Bc p are noles at the

1

zeiros of the spherical Lankel function or its derivaine, and the location of taese

: zeros is snch thal the singularity nearest to the origin is providea by one of the

smaller . ..aes ot n. For n =1 we have
eip i
hy (o= - 5 (149

ip .
1y ' e i 1
- h‘ ,\]=_- — l+.._.....) s
P‘.p (o) ! p ¢ o

showing that Aoll uas a pole at p = -i and Be 1 has poles at p=- ;-(l:t i,"fs"\

1

Accordinglv, both Aull and Bel' are infinite on the urit circle and since all

-

[}

-
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the higher coefficients are regular inside, the entire Rayleigh series must con-
verge for jp}<1. The fact that a singularity exists for which }p| = 1 implies

that tae series does not converge outside this region, and consequently the Rayleigh

series for the perfectly conducting sphere ¢onverges only for
ka <1. {3~33)
From the above discussion it is ohbvious that the convergence is determined

solely by the coefficients A

and B _ , and : i ¢ by, fur le,
oln 29 B and any change ‘n these Ly, ifus examp

a modification of the boundary condition may affect the overall convergence of the
Rayleigh series. To illustrare this point, 1. us consider the case in which the
boundary condition

E-(R-EVfi= nZh,H (3-34)

is imposed at the surface of the sphere. Here $ is a unit vector normal drawn
outwards fi o the sphere, n is the r<ciprocal of the complex refractive index of
the material of the sphere relative to free space, and Z is the intrinsic impedance
of free space.

Eqgn {3-34} is the usual impedance boundary condition and is only accura‘e

to the first urder in n. The pnysical situation therefore requires that r be assumeni
small (n=0 for infinite conduci1vity), though taere are circumstances unde~ whick a i
physical significance can b2 uttached to vqn (3-34) oven when n i< not emall cu.. -

pared with unity. On the other band, if the problem is merely regarded us
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mathematical one, it is a trivzial matter to show that the boundary condition is

preciscly satisfied by a scattzred field of the fo.om (eqn (2-2 6) ) with coetficients

= i = i i 3..35
thl Qn(p. in), Be]n i Qn(p, i/n) { 3
where
. 1 f.: '
. j (p+iv=-1pj (p)
Q2 (o, i7)= (-t 4l o ol v ] (3-36)

n{n+1) ol ro
h (i Ezhn(p?]

For a fixed value of 7, Qn(a, i?) is a function of p an. can be expanded
in a convecgent power series within some neighborhood of the origiu 5=0. The

circle of zonvergence depends on n and as in the ¢ -e of a perfectly conducting

nesro

spherc the least circle is previded by Ao'il and Be 1’ taat is, by 2,(p,i7). The

1

denominator in the ¢xpression for §24{p,i7) is

io .
FEIAN 1-7,

which vanishcs when

fiza7.\

"
N 1 {
s + oy
#201= =5 TV Ly /
o d (o 39N
p—- 2 2 1_ y )
These are two genitine zecos except when 7 =0, in which case the second zero must
he sliscounted. if this case is, for the nicment, excluded, it fotlows that the

Rayleigh expansion for E° converges only for
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ka<min(‘pll , IpZD
When7 is a general complex constant an explicit form for | pyjor{p,}is
ditficult to write down. k!9 [y>1or 1?7 '((1, however, we equations for p; and
o~ simplify considerably, leading to a more compact statemor: of the convergence

region. Thus. for[‘f l))l.

and for| ¥ [¢«1,
py~-i (1+7)
pa~i?.
Accordingly. for smail 0 the conves gence 1egion is specified by the zero p, for
the coefficient Aoll t. replaced by n) and is
ka< inl<<1;

similarly, for lu. £e n the convergence is determined by the zero p, for the

coefficient Bl_“ (-7 replaced by 1/n) and is

1

ka € <<,

In both cases the region of convergence is appreciably reduced in comparison with

that for a perfectly conducting sphere, and can become infinitesimally small. We

14
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cbserve, however, that for r, = 0 ‘he zero which is dictating the convergence
disappears. Th2 zero p; then becomes important and leads to the result given
in eqn(3-33).

If 7 is ncitber Ju: ge nor small con:pared with unity, the boundary condition
is of doubtful vahdity, but it is still of interest to examine the convergence of e
Ravleigh expansicn when n=0(1). Both p, and p,»m® as? 1 and, indeed, for
7 =1n=1, py and p, are intinite. This can be confirmed by looking at the expres-
sion for 2,(p,i). In this particular circumstance, however, £2;(p, i) imposes a
finite radius of convergence which now becomes inZ rportant one, and from an
examination of $,(p, i) we find that the Rayleigh expansion converges only for ka £2.

On the other hand, note that n=1 corresponds to a sphere whose impedance is that

of free space, and this is certainly a body for which the impedance boundary con-

dition may bhe expected to fail. Nevertheless, the result does suggest that if the

o vnw oy

exact bourn-lary conditions werc used, the radius of convergence may be greater

than unity in the case of a very diffuse sphere, an? - stuht of the coefficients

Aoln and Be in in Stratton [1941, p. 365] gives additional confirmation of this.
Returning now to the previous example in which n is large or small, the

fact that 2 marked reduct.on in the radius of convergence ui the Rayicigh expansion

Zcceinpanies the introduction of even a slight impedance into the sphere is,

physically, rather surprising, and suggests that the usefulness of the Rayleigh

15
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approximation is limited to perfectly conducting, or highly transparent, bodies.
The discontinuous change in convergence between the cases n=Candn £ 0 is
duc to the fact that there is no expansion for Aoln or Bclr which is uniform in
n. Essentially each coefficient involves a factor of the forim p/p-n, and for

n # 0 this can only be expanded in a series of positive powers of § when

| pl<Inl . Accordingly, any attempt to approximate the expressions for the
coefficients by neglecting terms of 0(n°) will be limited by this same condition,

even though the final result may somewhat disguise the fact.

76 -
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THE WATSON TRANSFORM AND CREEPING WAVES

The problem of the diffraction of electromagnetic energy by a perfectly
reflecting sphere foi* which ka is sizeable was made tractable by Watson {3.918,
19l9]. Watson found a transformation of the Mie series - the Watson transform -
which resulted in a much mo.-¢ rapidly convergent representation of the solution.
Much iater Fock [1945, 1945} and Franz Es.@ initiated a further analysis and gen-
eralization which in‘icated that the functional form of the Watson solution was
applicable to problems involving other convex snapes. The mathematical ccunter-
part of the extensions of Fock and Franz is found in the work of Langer (1932] and his
followers which was essentially completet for this application in the 1930's. The
more general approach has Ied to the presemtation of the results in terms of certain
“universal furctions' which have been extensivaly computed and tabulated under the
dircction s N.A. Logan {1959 . In our deveiopment we follow the approach of Logan
and his co-workers {1961] .

4.1 The Field on the Surface

We now compute the magnctic tieids induced ou tiw suriuce of a perfectly

conducting sphere hy pla:re electromagnetic waves, if ilie incident electric field is

Siven by
1 E 2 e-ikz
= )
(4-1)
E=-H_§e
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where w: ~ave made use of ii.2 results of Section O, the relatizz

1
n{n + 1)

p} (cos 6) = - p! (cos 6)
a n

(1,2)

and the notation {n {1,2)

=X h
+3) n
~ale the substitution

6—a=x-3
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the magnetic field on the surface is
-1
dP_~ (cos 6)
Hsin g -in ¥/2 1 b
H9= T (2n+1)e (1)
a1 g, (ka) 00
-1
' ; Pn {cos 6)
¥ s
gg)(ka ) sin 0
i -1
H cosf @ —inZ/o 1 8P " (cos 6)
Hﬁ- i (2nti)e tn-j2 W A
-1 g, (ka) 6
P! (cos 0)
i n (4¢3
(L sin §
gxn) (ka) 1

4-2)

(4-3)

{x), e'zn(x) =x _in(x). ¥or- convernicnce we also
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which results in

(4-4)

Using equation (4~4), equation (4-2) becomes

© -1
Hosin 4 QPn (cos a)

HG = =
a=l

1

W,
k) 2

2

(="

H

@en) ot

-1
; Pn(cosa)

) g(n‘n{a) sina
n

(4-5)

-1 |
aPn {cos a)
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We nov: rewrite the sums over the integers in eq... (4-5) as sums over the
odd half-integers, lettingn=2/- % R
H sin 9 Lt _i(y_ 1/2 )f/z V- 1/2
2 e 2 ] )

H = e (— .
0 xa -
= 3/2 yes
> p ( ) P-l . .
L1 (1)
{ Sy, ke de Gl sime |
(4-6)
H cos ¢ -itw-Ya) ’fg v- Y,
H,= ‘ ; 2¥e
P 3z
7=30
r - -1
: 1 3P, ‘1112 tcos @) ) ; 1;’ J/z{cos a)]
(1) (ka) da l,(1) {(ka) sin t *
V-1, v, J
For lzter use we note that since
P (Z0

the te,rs for v = 1/2 could have been included in thece sums.

The summands in eqn. {4-6) are regular functions of ¥ in a strip along .2

real axis so that we can write the sum as a contour integral about the pozitive real

890
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axis
A Ay T {____;7}—)/2 [leman'a (8-
sxi cos Vr d = -

2ince cos vz has simple polas at the odd aalf-integers. Specifically the eqns. (4-8)

become

i d f vey - -iw-Y ¥

- o

400055 & N Wy

. o=-i e € (U}
g k2 j cosys
C
(4-8)
_ Hcos 8 PV ey taTh
Hy=- = | ol b (v)

C

We have written the tering in squire brackets in egn.{4-6} us @ and Ez
wh

We examine the iern.a € 8(%} and acte that these sre even functions

of 2. Recmuse the remaunder of the Integrand 12 add the integrand is an odd functicn
of ¥. w: -msider the contwur C in Figure 4-1 5nd note thai tae lower patk gives

v-plane

4

FIGURE 4-1: THE CONTOUR C
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an integral of the form

-ie

i / dv o{v) {+-9)

G-ie
where we wriie G{v) for the odd functions of ¥ . If we reflect the contour in toe

origin we find

-ootie
1 - / v o) (4-10)
Otie
However, interchanging the limits
Otie
I,=" dv o(v) (4-11)
- +ie

and add. 1 the contribution oF the upper path the totcl integral is
oiie
i=- f av &3} {4-12}
~otie
In the sequel we will suppress the i€ in the limit with the understanding that tie path
is to run just above the real axis.
To evaluate the integrals of the form of eqn. {(3-12} we need -0 examice the
i~tegrand in some detail. The (irst thing wa note i3 thal the iniLgraids save simple

polesaw»ezerosof:, 1, Oan) and g7 )y 3w 0ese T 1 the firt quadrant.
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This analytic behavior siggests that it the contour (-, o) car be closad oy a semi-
circle ia the upper half-plane we can svaluate the intez o3l in terms of thene poles,
This is indeed the care under sertain circumstznces as we will show below, In the
coatrary case we will evaluate *he integral br the method of stationary phase,

As a oreliminar; o our examination of tre integrand we defire, after Logar
d) (2),.,

[1961] , the fuzetions £} v, 9) enc EL (2, 6) by

. .m__ - (1] {21.
—) 2P 8) = g+ E ) 3
¢ 3"1:'2 {cos 8) Em(v, V+E .4 (4-13)

where these functions have the asymptotic bekavior

™ . : 3 9
E{" 2}( ;.' 93 a~ L3 é——ﬁ— ﬂ(x, ..){71. 9) {é 'Ié)
m [ m

for || and 0< < x . Explicitly

<

s
iy
3

{Pempes M T . .
® P w2 T sve ¥ -mh)
E W= 4. e
Ep 26 [Ti#+17  {zsing
{4-15)
i -ie

. .F —+m.%—m, Y+ i; —
z 12 . 2siné
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1
y-mt 12) .
ermm 2 i7" -m Ty)

(2)
E (2.0)= -
m( & r‘-w'l) 7 sin 6 ©

{4-15)
. -i@ t
1 1 o1 ie cont.
. oFy{5rm, 5 -m; ;
271 (2 2 2 gin 8
We have remarked that the contour runs above the real axis so that
Imyv> 0;
hencc, we can make the convergent expansion
ivr - ¢ 27 ivd
secyr =2 z (—)‘ e“T V. {4-1G}
£=0
1w the form of E(;; 2 in eqn. (4-15) we make the following observations:
) -igr iyt ma} ()
EV(V,a)=e e E (Y, r-a), (4-17)
- m
ifr 1
Eg‘) (v,a) = E(n: (v, a+Lx). (4-18)

where eqn. (4-18) is derived from the fact that the hypergeometric fur<cons ace

(1

periodic in ¢ with the period 7 so that the continuation of the E m

in tae w-variable

W0 augiiZ ~ ~ 27 is determined by tic exponentialalone, provided we take the radicall

i 1
(sin ) /2 to be |sin vl / 2. Putling these results together
secvr Pml1 {cos a) =+ (—)! {E(]l)(v, 27 (4 +1)- 0) -iEil)('x/, 274 +0)}
v Py (4-19)

)
!
L
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where we have returned to the variahle 0 = r-a,

The oparations 9/96 or 1/sin § on P-ll/ do not essentially affect the
V-T2
behavior of lz’l-l1 ., 52 function of ¥ for [2’|>>1, Im ¥ >0. Hence we l:ave from the
-i/o
&
1
asymptotic form of the Eg‘)(v, ¢} that the dominant term of equ. (4-19) is of the form

iv6 V(8- o}

e so that the dominant term of the integrand will be e Therefore, for

Im¥ >0 the integrand will be a decreusing exponential in 2/ provided 6 > 7/2.
For this case the contour can be closed, the semicircle eontribution vanishes , znd
33\
the integral is given by the residues of the zeros of §(l) and g‘”
V- T e

rest of the integrand remains bounded, This is indeed the case except on the locus

1 1
of the zeros of §’() )1 ’ (ka) and !j l)l/ (ka). It can be shuwn, however, that a path can
P 2 ) 2

1w
be found between any two zeros on which the functions 1/ Cm , and 1/ g‘” remain
V-1 V-2

provided the

bounded.

The ieras el lhan e wominant one in eqn. (4-19) satisfy the convergence
condition nn the scmicircie for all values of 6. It is this behavior under the decom-
position [:;\;.A. (4-19)] that was the basis for the "creeping wave * analysis of Franz
(1954] .

We consider the behavior of an iutegral of the form

x
¥y, 1972 a0
1= [ vdve i St (4-20)
(V)
-Q0
83
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where we write f for either § ® or gm' . Now from the remarks above we
VYo  wlp
have for ¢ > 7 /2 thit
© v, /o O
ne El (2/no 5[’)
1=2xi (4-21)
00 28
oV )

where f(I/n) =0. Since the first zeros of f, in either case, occur for|3/] ~ ke for

ka large we can use the asymptotic forms

(ka)~-im/2{w(t) 6 m t wl('c)+...}

l/2 60
¢ (ka)=mY 2{ W) -+ m Y2 [(t + 9 )w, (£)-dt w! (t)] } (4-22)
vl
where we write
m = (ka/2)"/3
1 {4-23)
t= m (2 -ka)
and wl(t) is the Airy function
wt) = 17 (Bi(x)+iAl(x) ) (4-24)

Now we make a further approximation in the integrand of eqn. (4-20). We
give all slowly varying functions of 2/ their values at 2/ =ka and remove them from

the integral. This we do since for ¥ 3 x/2, and ka and hence |-un|large encugh
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the residue series [eqn (4-21) ] converges with sufficient rapidity. Again using the

(1)

asymptotic form for E (¥,¥) under the condition || siny >> 1, we have in thia

approximation two integrals which we write as

) (o] eiEt
f(g) = — dt
ﬁr_ / Wl(t)
- (4-25)
1€t
g(§) = .
W) (t)
where we put

E=m(y - % ).

We now approximate the fields on the surface for 8 > 7/2, ka sin 8 >> 1

¢ o]
- 1 1 E 0f tkagy . . lkady
Ha' ""Joﬁln¢m {s—in—a (—) {e [(EI) le f(f))
£=0

® (4~26)
. Z‘ ka gy thahy
H¢- - H  cos ¢ J_s_m = (——)‘l { g(sx )-ie g(«g( )}
L=0
where

E_'=m(21rl+9-lzr-)=m¢:( ,
§ =m(2ef +F-0)=my |,
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and, as above,
m = (ka/2)1/3.

The next region on the surface we coasider is 6 < /2. Here we need to
further decompose ine region since the'transition from 0 ~ u to the shadow boundary
6 ~n/2, is accoﬁxpliahed by means of two different represent..tions. First near
0=0 we eyaluate the fields given by the integral representations of the form of eqn.
(4-20) by a saddle point method for the first tcrm {n the expansion [eqn. (4-19?‘, .

The result for this leading term is

2 4
“tkacos 6, | stn2o 5 sin“6- sin'6

op, |
H,'=-H 2 cosf sinfe §—————— +...8,
6 o 2ka cos30  2(ka)2cos® 6
(4-27)
2 2 4
H°p=—112cos¢eikac°sn l-+= 3 SRPYTIY 3 +... 5,
¢ . Zka CUBS0 2(ka}" gon” 6

Here we *om: rk that the leading terms in eyn. (4-27) are just the geometric optice
fields.

To brid;e the gap between the shadow boundary and the optics fields in eqn.
(4-27) we note that asymptotically as £-» -co the functions f(€) and g(£) in eqn.
(4-25) go to the correct .eading term of the optics ficld {n eyn. (4-27). We can then
uge eqn. (4-26) provided we make a substitution in the argument so th°* we gat the

correct phase. This ia simply to let

E°= m(s - % )_'Eo =m 3in (0 - g ) (4-28)

(€=}
o
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| tn the leading terms of eqn. (4-26) for 6 < # /2 and 9>90>0. Here the choice of

Go is somewhat arbitrary. To make the choice of eo specific {8 not meaningful so
we speclfy the range [SUO, 600] so that the reglons of eqns. (4-27) and (4-26)
overlap,

In either of the rases we also remark that the terms in eqn. (4-26) for
A =1, 2, ..., will slso appear just as before, However the terms near the caustic
{n the 1it region diverge as 1//sin 6 as 8~»0. We will find a bounded represea-
tation for these when we treat with the same behavior at the caustic in the shadow
region, 8 ;r.

Wo will now find a representation for the fields in the reglon near the caustic
!n the shadow where ka(r-6) {8 small. After Logan [_1961] we make the physical
argument that the terms in eqns. (4-26) of the form g(El )eiw/ 8in 6 doscribe
vaves which diverge from 8 =  while terms of the form g(Eé )eikw'/ls—in—e describe
waves whici; converge toward 8 = #. This suggests that on the surface these waves
can be represented by Hankel functions which repre~~i ronverging and diverging
waves in a cylindrical geometry. This behavior is also suggested by the represen-
tation of the [unctions E(rl!; 2) (2, 6) in eqn. (4-14).

We consider the tern of eqns. (4-26)

KL
Jka(2nb072) tha(27£+ 7 -6)

e - le
(sin § BlEg) zin 6

g(§ i ) (4-29)
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“T'his 18 a valid representation away from the caustic, for ka(r-0)>>1, aud is
suggostive of the asymptotic form of the Hankel functions. We will find such 4
| Hankel function representation and then continue eqn. (4-29) to the caustic region.

From the asymplotic behavior of the Hankel functions

K} /
+ iz - 74 )
! ll 2) ”, = — - -
H1< (6) t !I ﬂzz e (4 30)

we have that
.
Jka(2rf +0 -712) -, e-3ﬂ/4 Y eu«uzwh 2)
= J"’z

Jsin 2

o (4-31)
) L
'\ sin 6 Hy" el 02]
and 3
tka(2rf + 5 -0) %
o a4 33’”/4! ka7 elka(211+ %)
Jsln 0 2
(4-32)
[122 4 (ka(r-0)
sino ! [ ]
If now we aubst.tute equs, (4-31) and (4-32) in (4-29) we get
-Ar/4[(mqy Ika(2rd+ 7/2) —
e |—— e |Z=6
2 \siné
(4-33)

.{u‘f" (katr-0)) gg el (katr-0)] otey )}

g0
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Now {f we let 0 approach = we have

8(15'1 ) = 8(52 ) (4-24)

and (4-33) becomes

- ika(2rd + 7 )
e /4 \l kar/2 ¢ 2 2J' (ka (x-6) )8(81) (4-35)

which is finite.
In the ahove treatment we have performed the continuation into the shadow
caustic using the g(§) as an example. Of course, the same will hold using {(§).

Using our new representationg, eqn. (4-33), and the analogous one for the

f(€)'s eqns., (4-26G) become

_3ri/a o tka@rd+"2)( ),
e oing o " A (22 57 o {Hl‘z’ (e (r-0) )

+1" (ka (r-6)) wz',)}

L . CERARe Gy S e

(4-36)

3 52!
Hy " H, cos pe “/4'"3/2‘-@:; OZ‘ f lkalent+ "2 ){ (ke v -0))g(§y)

+ 1Y (ur-6) ) (EYy) }

where as ahove,
1/ 3

m = (ka/2)

& =m(2r 4 + 9 '!‘)

i gl =m(2r f + == 3 - ),
and 6>7/2.
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A similar representation cun be found for the higher order terms ncar the

caustic 0 =0, We give the results without repeating the analysis.

®
37r/
E ika(2r 0+ 7/ 2)
cw _ ) 7r1/4 0 _f
n, =H, sin @ ¢ ]nm‘lsmg !=0( ) e

. (v (2) 1
{Hx (ka6) f(e—!'*'l) + H (ka8) I(EI )}
(4-37)
T 4+ 7]
_ -ir/4 3/2 _. ’__5— ika(2r L+ 2)
=0
L da (2 :
{"l (kad) 3‘Eg+1’ +H) (kaf) E(E_e)}
where 6 < 7 /2 and ka sin 8 < 1,
4.2 Ths Scattered Field
Again with the field
Ei s Eo 2 e-lkz (4-38)

incident on a perfectly reflecting sphere of radius 1, the gcattered field to order 1/r

is from eqns. (2-16), (2-17) and (2-25)

92 ol
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-y 1
E> E lcos¢ e 2 (" 2l t-p (@) dPyfcos 0)  wylke) Pn(c:’s:)
) kr ntl ' - sin
8 n(nt+1) (1)(ka) 36 ‘52) (ka)
(4-39)
1 !
£® - -E lsing E;;i E P 2kl “’n(ka) 3Pr'l(cou 6) _wn(kﬂ) P,(cos 6)
6 r T n(n+l ' sin 6
‘ ° =1 nfere1) Cg)(ka') a0 K(;) (ka)
We make the substitution. of gection 4.1
6—ra=x-9
n—y¥Ysn+ -%
and use the relationships of eqn. (4-4) of section 4.1 and write
t v . (ka)
| 5 RS S 1,..1/2“““) BP 1/ (cos a) -1 Fx',_l/z(cos a)
E;~ E ! ros ¢ i ey 2V (l) e
ve32 ¢V k) 20 !, ()
v.l/2 Y,
(4-40)
v, (ka) 1 '
. ke E J_y_ 1/2 Bl;_l/z.cos a) ¥, 1 v-1, (ka) !:/_1/2(005 @)
E¢=E isln¢-E;- 352 0 u; air;a
35 (ka) e J
V= 2 20 o !'%/_1/2 1/2(k8)
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we now restrict our detafled treatment to the first of eqns. (4-40) and con~

sider the sum

-1
(ka) JP 1 (cos a) v (ka) P'l
V- 1 . (cos a)
e® = 2 20| — / L + 2 v-yf o (4-41)
n
b, C'V_l/z(ka) Ja g”‘l/z (ka) 8

Eqn. (4~41)has the contour integral representation

-1
. / vy d{y _l/z(ka) an_l/z(cos @ ¢ /2(ka) P, 1/z(cos a)
o=
1

+
+ eZIVW g(liv (ka) ya g(1) (ka) sin

-2 v-Y, (4-42)
where the contour C cnelircles the positive rezl a-is in a clockwise direction as in

c

figure 4-2. As betore we note that the contribution

Yplanc
e
 — e
FIGURE 4-°

of the poles st ¥/=1/2 vanishea.

Since 2, = ?:(l) + g v cqn. (4-42) can be written as the sum of two lermas,
The first we consider is

-1 \
vdy BPv_yz(cos 2, DPnl(cos a) P, ](cos )
L= —oivr ¥

1+e P L ou sin a
c L o ) K
(4-43)
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But (03]
2 1, 5-1 L e -

(n+2)Pn(cosa)- 2cot:2 , (4-44)

n=o

hence, cot a

.8 (1 a. 17 2 4-45
L& (3°t3)%% Sma 0 (4-45)

From this rcsult[eqn. (4-45)] we confine our attention to

2)' -1 (2) -1
2dy IL_!):Z(ka) 31’,_ 1y (cos a) . 51-1/2 (ka) P, _yl(cos 29
o8- 12l VT | ¢ ' (ka) da g(l) (ka) sin o
s 1/-1/2 ,/_1/2

(4-46)

Since the integrand in eqn. (4-46) is an odd “'nction of ¥ we can reflect the

lower part of c in the origin and get

2y - -
ootie § 1 (ka) P 1 (cos a) §(2) (ka) P 1 (cos a)
e°- ydy V-2 VY + ) it
.l.-%vezu?ri :(1): (ka) a §(1’1 (ka) sin o
~artie LY Yo v (4-47)

where € >0 is a small parameter. In the sequel we drop the € in the limits of inte~
gration with the understanding that the contour is to run just abovc the real axis.

As In the previous discussion of the fields on the surface of the sphere we
would like to close the contour in eqn. (4-47) by 'a large semi-circle in the upper hal
pines To this end we decompose the Logendre funotion as in eqn, (4-1u),

(2)

-1 J4Y)
-2P ., (cosa) E, (v, a) + Ey (9,0 (4-48)

vV
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[

. 2 -iv
and require 0. Since E(l)(v, ... e % s the dominant term in the

I.egendre function in the upper-half #-plane,

1 .
i- __l-sz/— =1+ 6e™¥T), (4-49)
1+ eZi vr 1+e 4
and since in parts of this half plane
2
f,‘,_)y (ka)
2_ =0 (4-50)
1
C( ) (ka}
v-Y,

we have that the terms of the integrand of eqn. (4-47) are exponentiaily small for

|1/|>>1 except for

(2 () g
ka (ka)
3 1/2( ) F ( 2 , 1,_1/2 (v, @)
(ka) oa LD . sin a
L y / 1Y 1 (kal
{4-51)
The remainder is
"
r:(z’ i) [2zDw,a e, )
c 1 ‘V~l/2 1 1 1 )|
I = —-yd v e_ -
2 (1) Ja 1+eZ‘V1ri .11 .. —2Vxi
-0 g 1 (ka) P J
- /2
X {4-52)
(2,
i w0 2w D, P
¥ 1 (ka) sin o 2vri sin o 1+e-21’1ri J }
A J
V-/o
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Eqgn, (4-52) can be determined by closing the contour and evaluating by raeans

1 1
of the residues at the zero of l:(l) (ka) and §( ) (ka) . Iif we designate the zeros of

) vty vte
(ka) by v
PE
1
g (ka) =0
ﬂn°1/2
and those of §(1)' (ka) by U
V-Yy m
g(1) , (ka) =0
'Um" 2
then
\2) (l)(z, 0)
. Z Vn l/g(ka) 1 ]
1 =7/ v 2V .
n [ §( ) (ka)] sina e
n v v-l A
(2) (2 ka
By Upa Yo
- ———— - 57T |+ 7 E y
stn a l1+e ™ m[ 3 ( ) ( ]
b " 9V V-l/z %
RAY) N
aEl (‘vm.w : JE(lz)(‘Vm,a) 1 ‘l
oa 1e2 “m7! ) da 1+e21’m1rl |
) (4-53)
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Since §y‘1)]/ and its derivative vanish at the poles we can replace ?; in eqn. (4-52)
-2

by 2/, ,, . Also, since the zeros of §( ) and t( y
73y v vl
iently large we can use the representations

/2

start at l1/l~ ka for ka suffic-

1/2 { 1 -2(2 1
,, =M v(t) - == m ~ [t vi(t) + 4t v(t) ]
Y-y, ® - %o [ ) }
{4-54)
1/2 1 -2f2
=~im w,(t)- — m “|t wt)+4tw(t,\}+...
E,,' 1 { 1 60 [ 1( 1 J
where
t--— (V-ka), m - (ka/z“’s
and v{t} and wl(t) are the Airy tunctions
vty = Ja AU,
{4-55)
w®) ={7 B®+140)] .
Since Im ¥/ >0 there are the convergent expansions
E (= l 27ri'ﬂl
2~riv
(4-56)
‘-q
1 2xiv § 2xiud
—— =@ )
~27id 4 (= e
1+e ,&:O
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From equations (4-17 and (4-18)

@
Eil) (7, a)
— = (_)'9 z-:(:) (¥, a+f7)
1 +e27ri1/ oo

® (4-57)
ED (7, a)
- 1M

_— = 2 (9 E (v, 22(f+]) -a)
1+e-21w 1

£=0

and

Co-2) wa-T)
E(:)(‘ll, o) = - - 2 o (4-58)
[Fw+1) Y7 sina

So on substituting equs. (4-54), (4-57), and (4-58) in eqn. {i-52)
a
. “rif4 Z . .
c 2 i iy ity
I =(x) e (=) |qi&; ) e  +iq(E, Je (4-59)
m172 " {: St 5y J

where we write, noting that this is 2 different notation than the previous for §,

§ = (224 +x-—9)m=mwl

§ =(2xd+ 1 +6) m = my (4-60)
® vi(t)
G= —1‘ eigt ;
i w(t)

-~
Here we use the caret notation not to designate a unit vector but to be consistent

with the notatior. of Logan [1959] .
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point occurs at
Y=kacosaf2 or  ¥=kasing/2

So by the standard »:othods

IR='%kae

Finally we have the expression for the fields

-2ika cos 6/2

8 eikr i -2ika cos 92 (ka)2 3ri/4
E9=Eicos¢h_ Jkae +';T/§e
]
i iy
- _;_ = (e e + 1) Je ’]}
£=0
ikr - o, () 3r1/4
Ez= E isinpekr {%meZikacos 2*;172'3
o H
1Yy 1Y
_;_ F [bgre +hepe ‘j}
£=0

'where Ed is evaluated analogously to Es and tle function Q(‘g') is gziven by

B vt
ber =y / .
1

We return to eqn. (4-51) and make a saddle point evaluation. The gtat onary

{4.61)

(4-62)

(4-63)
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Near the forward direction, a~x , il is necessary to modify our treatmert

because of the singular behavior of the functions E( 2)(# ¢). We will start with

the integral representation of eqa. {4-42) put retain the Legendre functicra,

o=
g (l) sina

e 2ivx mv ka)

)
-‘/2 fea “1/2

where ¢ is a clockwise contour about the positive real axis. On reflection of the

- 4 . 4,
. oudv l/;, 1y, (ka) JPv_llz(cos o) +¢fu_1/2(.(a: 5-1./2 (cos a)
I3
c

odd part of the lower contour this becomes

ka (2)’ N —1 ;(2) ‘h) -1
. §y_1 b (ka) 31;, 1 /z(cos a) Y =iny 11’!_1/2(cos a)
° | " T
4 (ka) 2 sin @
o v-l/z -1/2 (ka)
® ka) -1
! !’ 4;, 13 ( P, _1/ {cos a) '/;’__ 2(ka) 1;) _llz(cos a) ]
+ 2veY! 5 +
joay Je . m ) sina J
ka Lfv _]/2 (ia) v_llz
ka GP.I {cos a) (cos a)
vl v-‘/z ]
+ / vav +
Ja sina
0
wiie o2r -1 1
- > ka §
. vdv -V (ka) 311;_1/2 (cos a) _1/ (ka) 1; (cos ) 1
-2xiv (l)' (i)
/ lte (ka) L4 sina
e IR TA i’_l/z(ka
(continued
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+
Ja sina

-1 -1

0 g

vdy [al;z.l/,fm ) By, o }
1 +eZzi‘D

ow-ie

ooHe -1 -1
i lcos a
) vdv 911’,.1/2“’” a) Py_,/z( )y )
-2ziv *
1 He © oa sina

{4-65)
The first two terms in eqn. (4-65) are evaluated using the Bessel furction

representation of the Legendre function

p! (cos a) = % 1 'vej (4-66)
V-,

for }1/| large and @ small. The result is for the first two terms

(2) 'l _l
ka £°%), (ka) P (cosa) © %  (ka) p-y, (cosa)
. V-2 v/ yav + (;’ ) V- yav
) sina ina
~m $ 5 (ka) / t . (ka) s
* vl e Sy,
Jl(alm) ©
- 27— m {ikap@+mp (0)+...} (4-67)
where we write 0 ®
R . igt Wy(t) 1 g vit)
pl€) = 5; " / e -—*wl(t) &+ I e dt (4-68)
-00 0 1
{1) © - ap(g)
9t
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() __d_ .
©= 55 p). Similarly,
a ¢ Ga) P (cosa) ® ¢ . (ka) IP
. ) _11’ v-Yo . 7/"1/2 ’,_1/2(008 a) o
2 (1 2
-0 ’J-I/'2 ka y-l/ 2
2{7 5 e m [kaq@+mgM0)+.. ) (4-69)

where the q's are the functions

Y W P VD
Q(§)=T£“F:—“/ elct . .2' df-!-:..l—,/ e’gt—,—-—dt
Q0D

g,

wy(t) 7 0’,._ wit)

{ {4-70)

M, 098
q (§)= 3%

The third r2rm ot 2qn. (4-65) is evaluated by using the small angie expansion,

(vz-'i')(‘vz = )sin -g'
_ 2 1, 2a
P 4, {cosa)=1-(¥"--)sin" —+ Foees {4-71)
v-¥o 47 2 o2
We find
l -
ka 1 {cosa; p 1 {cos )
v 1-4o ﬂ-llz _ )2_(_]; 4 él 2) Za
Jo ;
(% 0l - 0t (@) ant e (4-72)
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‘The fourth term is evaluated using the Besgel function representation of the

-9
Legendre function and expaading the denominator (l+e "hi). Again we remark that

integrals of this form can be evaluated by residues and hence we can replace g(z)ll

2

hy 2¢ 1/ S0 as to keep the form standard. Perfcrining these operations and keeping
V-2

the higher order tcrms
@ (2)' (2) -1
/ Sd -v..l.- tks) /(cos a) o lz(ka) 1;)_1/2(003 a)]
/o L1+e7 2 @ ) oa T )1 (ka) sine
1’ ,2
a
% gkaf7 m _S_ e 3"‘*"{ 3j(kna) q[maﬂ)zz + p&n(w)z-]}
2=0

where, as before

o
Aoy L Bt _w(t)
£) = 'ra / w(t) dt
{(1-73)
w

- = [ et O
ir \v; (t)

The last two terms of eqn. (4-65) are equal and can be evaluated using the

Fexparsim in eqn. {4-71). We goi
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0 oorle r:—,’P.ll {cos ) ! tcosa)
1 1 l yv- /2 7-1/
- y 4 + 2
H_eva He-z,yi I Ja sin a
w - i€ 0
[N
r P {cos a) P {cos a)
o ydy i iy-¥y ly-l/
1‘*_!3273,' 1 PL sina
1]
1, 3 2 a 185,767 4a
..12-!-170 sin 2 +4,193"6f‘8in 3t eee (4-74
The fields are given by

5 _ 2 (1, .4
Eg= E icosi-—- {(ka) -[ (kaj s(ka)z] sin -+...

J,(oka)

a— oy
+2 m{liu 0)+m W+,
ir o p(0) p }

+2 73] (aka) m [ikaq(ﬁ)+mqa)(0)+...]

@

2x({+1)ka
~-2kafr m E (—-), e r (J;(m)a[m2z(.(§-l)]

J(kaa)

8 [m 2:(9+1)])» (4-175)
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Es= E isinf giE'(ka)“-l:-l-(lc:it)ll-é(ka)z o
] o kr 4 8 2 "

J(oka) -
m|ika q(0) + m ¢ () + o)

+2{xr

+2{7 3} (aka) m [mx:(c»-:-mp“’ (0)+...]

®
-2%adr m Z (—)i ezﬂ,ﬂm=I (Ji(a‘h) P [er(f-!—li}

2-0
J(aka)
1 A
+——13 [m2s (1+1)])} (4-76)
4.3 The Formulas of Seclinnre 4.1 and 4.2.
For a plan.c ele~tromagnetic wave
B =g Rl 4-77)

incident on a perfectly conducting sphere of radius & we present the formulas of the
previous subsections along with a brief commer ¢ on the physical interp-etation and
the methods of calculation,

4,3.1 The field on the suriace

In the lit region including the caustic we have found the field ¢~ ~onegist of two
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terms. The first is that due to direct illumination. This is characterized by the
fact that (1) it reduces to geometric optics in the limit ka—»m and (2) it carries

the pbase of the incideat field. Under ‘he somewhat arbitrary condition 0 <8 <60°

we have the direct iield
ikacos 6 ising 5 sin’0 -sin's
=z=2H cosfrinpe 1+ — =g+ —3— *aese } »
& o ¢ 2a co8”0  2(ka) cos” 6

{4-78)

op
B, =~-2H - +
¥ [ cosfe cos 8 2(ka) coe®s

~kacoss f 1 sin?9 9 sin’6- sin'0
Zka

‘The second contribution in this region arises 7 -om waves that hsve crept
3mmmammmm,ummmbyhmngﬁnpum
ka(220+ 3L ) for §=0. The form we give for this contribution depends upon the
valne of ka sin @ although we impose the restriction 6<x/2,
For 8= x/2 the i :eping wave contriiution is for ka sin 6> 1,
{ ik‘Ll-l. &2’"2 0}

©
cw 11 -
ge == Bosin $ - ml'o (—)’ e € € _u)-!e ﬁEI )

{4-79;

fkat/ ib&'
1 4+1 ’
H 5 =-g°mp ‘___.—-——-6 (—)’ {—e B(E ‘{ﬂ)o!e g(ﬁl )}
1=o
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andfor ka sing<1
- 3r
ew_ ir/4 e E ika(2z 4+ 7" /2)
H '=e Ha@:inp{—:rm4 praw - (Je

L
ar @
. B'l {ka0) K(§ 1 +1)+ ﬂl (26} g )

(4-80)
/ m_;:' toa(22 £+ 372)
-ix /4 3/2 ) £ X+ 2
H;w=e H cos$ m / ﬁ'lm‘ % A
)y @y
. {B‘ll (kaf) g€, , M+ By (ka) g(gp}
and for 6 =0
P 3r
ir/4 ika(2rf+7f2) .
Hy =2 sosi-.ge"'/ fzm z e & J)0a0) A5, 1)
=0
o (4-81)
o -ix/d aqrt0 ih(211+3'12)
%20 cospe - miiE 2 e U2 ez g, )
p 0 120 3 1‘!‘.

In eqns. (4-80) and {4-81) the function f{§) and g(£) appear. The. bave been
compuied and tabulated by N.A. m{zsss] )
In the transition region 30°% ¢ <90° there are again two contribuilens. ihe

first is the continuation of the shadow currents, the second is the creeping wave
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contribution. These are

1 1 -iks co8 6
HO=-iHOSin¢ ™ m[e f(-m cos 6)
< ik, ikaye !
+ Z Ao 1 g, -1 )
{f‘ -g ;
0 L b

(4-82)

1 -ika cos 6
= - -m cos ¢)
H’ Hoeost = [e ¢

@ ; \
+ Z-(—r’ { B CME M g(ej,)ﬂ

L=0 4

ﬁ!erewe!avemade&embwmﬁm
.y X < . _x
go-mte-z)—*-so—msin(e 2}
=-mcos 0

the Sirst term so that this term has the ph-se of the incident wave, The subsequent
[:rmsamjustthec-:eepingw::':: contributions recognized from their plases.

In the shadow region away from the caustic, 9> /2, kKastn @ > 1.
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© -
1 H i
Hg= —iﬂosin’;{si-n—g' xé (—)’ [e f(El)-ie f(gt)]
)
{4-83)
) 1 o PN
Hy —-Hocos, [———MOIZ(J[ 43 ( ‘(51’]

These are purely creepia® wave terms agair cheracterized bv their phases.

Finally near the shzdow caustic we have forkasin0 < i, 6 >x/2.

m‘lt“" fz)[ élz)'

¥4y gin ﬂ'i-? [jate-01) 1)

He~

+H(;)' {h(t-a)] ﬂEi )}

(4-84)

ui[& 3/2 1 a2z +72)
‘F\ sin g A A

”M’H

L. { (2 fatr-a)etgy 1 + 5] fratr-21] g(sj,)}
Hos ] ska(2s f+72)

Bgz leosin P e—3ri/ 4 m:jé { e .!1 {h(:-e)} f(gt}
=0 {4-85)

™
g2 cosfe 2y go e I[h(r-e)‘sl,t)
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4.3.2 The Far Field
In the far ficld there are essentially just two regions. The first is the large
region for which 0==82z. The second is the forward scattered region for vhich

g~z andka 5in < 1,
For 0£5 <z the dotuinant contribution will arise from the terms

{4-86)

which in the limit ka—s reduce to the geometric optics fields. The additional

terms correspond iu the creeping wave contribution and are
@®

ikr 2
s\ | e (a)”  3i/4 2 (Aes i
(\Eejc;iEocos, T /2 € e I—)" q{ i)e ﬁ&&g)e
{4-5¢)

| W—

Rl (h) 3xi/4 Zm AL, ¥ 1
( ' =iE sin¢ T ! (—}!(p(Ei Je +3(§!}e
2=0

111




THE UNIVERSITY OF MICHIGAN
3648-1-T

where m = (ka/ 2)1/ 3

§, =(2rd+ x-6) m =y,

§l' =(2rd+ n+0) m = mqlxl'

and o
pie) = Ji= / & ;"(l(%-— dt
et
fe= 2 ist %
-

are functions which have been extensively takiiaied by Logan [19558. The creeping
wave contributions are a very small correction except for cases in which there is a
phase correlation betweer the primed and unprimed terms in the brackets. This
occurs for ¢2 =|g(' mod 7 orilé =t/ﬁ mod 27. Infac! ‘or 6 =0, backscattering, this
correlation approach can be used to predict the relative maxima and minima in the
backscatiering cross section as a function of ka.

In the case of forward scattering there ar.. .o >vo distinet contributions. The|

first can be recognized if we recall the cross section theorem which states that
_ 4z
Op = —k'g Im f(x)

where p ig the total cross section and £f(8) is the complex field amplituds. Since in

the 1limit of geometrical optics

0., =4za
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we have in this limit that
Im f(r) = (ka)’.

Recalling the form of the forward scattered field we have the optics contribution

ikr

(Ef, l; iE_cosp ]

{ )? -2 - 2 2’ sinz(a,/Z)-i-...} (4-88)

and(E;) is the same expression with cos §) replaced by sin @
op

(=),

The remaining terms in the forward scattered field are those that arise

2. 2 v 2 ea)®) sin’ler2)+ } (4-89)

directly {rom the shadow boundary

/ g eikl“ Jl(a'ka) M
(\Eﬂ)s:si E cos ¢“k"r (2 fi‘m){ [ika p(0) + mp" (0} + .. ]

+ Ji (e ka) [nm q(0) + mq n (o)]}

{4-90)
fkr J. (@ ka)

- . e 1 L. - (Y
=iE S (2 e e« " :,".;,1_ o\+.'.
kE¢/’ osmﬂi l (2 [r m) - [...q mg  {0) ]

+3) @) [tk 50+ mp 0] |
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and those which creep around the sphere one or more times

. Jkr =, g ar(H)ka
( )cw=iE°cos¢? (-2ka,ﬁr'm)2 (=Ye
A=0

Jl(ka a)
p (2rm(+1) )J

fJ (ka @) §(2rmiir1)) +
(4-91)

k 7 CW

1, a‘

ferm(s+1)) ]

(3 2 @) Blorm(l+1) ) +

wl(t)

in the above
= (t) 0
. / eigt vit) dt
0

which have also been extensively computed and tabulatea by Logan rlgozﬂ
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A\
THE PHYSICAL OPTICS APPROACH

Perhaps the best known technique for obtaining approximate solutions of
high frequency diffraction probleris is the method of physical optics. The key
feature is an assumplion about the current distribution on the surface of the scat-
tering object, and in this section the method is applied to the case of a perfecuy
conducting sphere ¢f radius a. The degree of approximation involved is examined
by comparison with the exact Mie series, and a numerical example is treated which
lends support to the use of physical optics, particular where the main purpose is to
obtain general estimates of the scattering behavior,

5.1 Physical Optics for the Sphere.

The scattered magnet:c field is given in terms of the current J induced in

the surface of the sphere by the equation
ikR ,
98=-;“;‘/ SR—(RA.L)dS {5-1)
S

where R 18 a unit vector from the receiver to a ve-" ‘bie point {3, €', ¢g') on the
sphere, the distance between these points being denoied by R, If Jwere accurately
known, the abeve equation would provide an exact expression for the scattered field
and the basis of the physi.al optics approach is an approximuiion to the true value

of X
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According to ray theory there exists a sharply~defined shadow regi«1 bzhind

the sphere in which the total field is zero, and since

J=nAH,
where f is 2 unit vector normal, the current distribution over the shadow area must
be identically zero. For the illuminated portion of the sphere J is obtained on tiie
assumption that the field is reflected at every point as though an infinite plane wave

were incident on an infinite tangent plane, and this gives

Jge=ohan (5-2)

that is, twice the {ungential compoaent of the incident magnetic field. The current
distributica is now completely specified by choosing the incident ficld 23 that given

! in eqn. (2-1), and hence, at a point {a, 6', §*) on the illuminated side of the sphere,

» - 1]
g=(cose':-’é-sme'cosp'2)2uoe“"‘°°‘° . {5-3)

Moreover, the fsct that r is large compared with the radius of the sphere means

]
that R iz -fectively dirvcted toward the origin and

R~r ~acos 8 cos @ - asin 0 sin 6' cos (f - §")

from which it followe that
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H =0,
r
3/2 2x
ikr
o= n o* € aing / / &% gin 6" cos 0 a0 ap,
0 0
z/2 %%
pe-- p, —sin&/ / sin 5'“9""9"1"
[} 2r o
0
x/2 2x
ikr ikaf
_2&. Hoaz -eT—cosawsﬁj/ H o sinﬂ'cose'ds'd¢'-
(1] 0

B =(cos 6+ 1) cos §' + sin 6 sin 6' cos (§-§").
Of more direct interest, however, are the ccmponents of the eiectric veciur

in the scziteved lield ane %y using the equation

E = V AH
we have
ika2 e
3_ ika_ e + .
Ee 2r Fo ¢ I, 86 lzcosOcosﬁ} (5-4)
2 ikr

o _ika _ e e oy
E¢ = 2y E Iz Sin, 15-5)
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#/2 2x
/
with .
L= / e tkaf sinze' cos @' d@' do*
0 O
and
x[2 2x
I
1,= / / e KB i cos 0 ag* do'.

0 0
The component E: is of the order l/z-2 and therefore negligible by comparison,
The above integrals caa only be evaluated exactly in certain special cases
and for arbitrary values of 6 and § it is necessary to rely upon approximate tech-
niques based upon the (agsumed) large valve ¢! ..a. These techniques can be

{ilustrated by reference to L. Here the P-integral is
2r

/ e-ika sin@ sing' (XS(’"')M '3 d’t

0
2% —ﬂ

e-ﬂm siné sin6' cos ¢'(m foos § - sing sin") dpF.

-$
and since the ‘erm invclving sin §' contributes nothing, the Integration being over a

complete period, we are left with
2 -

-ika sin 9 8ing' cos §'
cos # e

v

3

cos §' df’ = -2x1 cos § Jy(ka sin 6 sin 6')
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and hence x/2

1=-2¢i cos § / ¢ Tkalcos f+l)cos & 3 (ka sin 0 sin 6') sin 6" dg'.
0
If it is now assumed that ka sir 8 sin 6' is large compared with unltyi' the Besgel

function can be replarad by its asymptotic expansion to give
1
T/2

- 14
L~ - 27 oos 4 o lkalcos O+l)eos 6" iy o o110 sing'- 3% )am%s'ds'
tkasing 4

0
and by writing cos {(ka sin § sing' - %" ) in exporential form it can be verified that
the only saddle point for which 0 0=y and 0= 9""‘.2 is 0' =9/2. This is equivalent]
to substituting
e.'.pi[gf -kasineaine']
for the cosine factor and gives 8

[SCY o

-

— — 3 ]
JRCTEN -2ika cos 3 cos &' 3/2 6
L~e &;smecosﬂ e gin (2+9'.w

b

2
()

ke cos 2 (L -2
{ia cos (5 -3
ix/4 o g8 2
~e / g.!bta.n-g'ccsdez211““3"8i eit at
-fia cos

(X R{- .

that even if the subsequent evaluation of I1 and 12 were performed exactly the
results would at best be approximate.

+ The failure of this condition at the lower limit of integration clearly indicates .
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Providing 8 0, x (cases already excluded by the requirement that k2 sin 9 sin @'

be large), the limits of integration can be replaced by + o and since

® 1t2 i
/ Y Th
-
we finally cbtain
0
_ irx 8 -2ika cos 5
tanzcosﬁe .

Ananalogoustreatxnentappliedtothemtegrallzludstoﬁeremh

e 2]
I = dx o 2ika c08 5
2 ka

and if these expressions for L and 12 are inserted into equs. (5-4) and {5-5), the

scattered field takes the form
Eg=-%Eg-e—iki coale“mk"”g, (5-6)
E;=%£°3:_Esmﬁe'w°“% . {5-%
The corresponding scattering cross sections are
A =xa? cos® § {5-8)
. og " xa® gin® f. (5-9)
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Thae above results have becn obtained by an approximate evaluation of Il
and !2, the basis of which is the assumption that ka sin 6 is large compared with
unity. The smaller the value of sin 6, the larger must ka be in order to fulfill
this requirement {sc2 footnote p. 119 ) and in the limiting ¢< es for which sin 60
the method is not longer valid., 7t is fortunate that these cases ~re the very ones
for whichk Il and 12 can be treated exactly.

6 =¥ corresponds to forward scatter and since B is then zero

L=9
F 3
and
L7
giving 2 fr
Es=--n-°;-l-: £ cos §
] 2 o r
and 2 ikr
s __1a o &
Es =72 B ¢ sinf

The polarization '5 ©::- 2forc iduntical to that of the incident field and the scattering

Crose seciions are

09=:k2a4cos2’
and 4
o’=1 kza sinzﬁ ,
implm G=0 +°- =;4.‘.'—A.2
e ¢ 1?'
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2
where A =7a” is the geomnetric cross sectional area of the sphere.

The other limiting case i8 8 = 0 and correzponds to back scatter. Since

B =2 cos @',
Il =0
and 7/2
-2iks cos 0' , . 7 -2tka, 1 -2ika
= B e Se———— + o —— _l
12 27 e sin 6' cos 8'd0 ke e ol (e )
0
T "2”‘3
~ - e
ika
if ki I8 lé.rge. Hence
fkr
5__8 -2ika
E,=-5E ~7 cos fe
8_2a em‘r 21ka

E¢— 2 E 5T sinfe
and these are in complete agreement with equatinas (5-6) and (5-7) notwithstanding
the fact that the approximate method of evaluating 4 ang 12 breaks down when 6-0.
In view of this continuity as @ approaches 0 it {g rcasonable tc put forward the
scattering cross sections given by equations (5-8) and (5-9) as valid for all 6 not
| near io and the implications of such a atatemcni will now be considered.

5.2 A Comparison of Formuiae

According to physical optics the scattered electric field at any point consists
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of two in-phase rectangular components in the aperture plane of a receiver directed
towards the center of the sphere. This is certainly in partial agrcement with the
conclusions of the exact analysis.

As regards the nature of the scattered field and its dependence on §, the
predictions of the physicai optics method are correct, as may be seen from &
comparison of equations (5-6) and (5-7) with (2-27). But the approximate treat-
ment has produced components which are in phase for all 6 and moreover, has
destroyed most of the dependence on 8. Indeed if we exclude for the moment the

case of A near to 7 use of the physical optics met'.cl .15 cquivalent to replacing

W 1 1
S.(9) = , Il E.rl_(_c.gs_e)+ {B ::Efi}s_e.) (5-10)
16 = _/j_, (-i) A, p n Py
nd
nnd ' 1
© ) o
] R f n~(cos ) o n P_(cos 6)
5,(6) = /| "‘nt_——ae n siné (5-11)
n3

o~ 9
by 3 _kz?' o “'ka cos g respectively, where A_ ond ® ure defined in eqn. (2-25),

In particular, for backscatter it replaces

@
; ~2ika
D™ wBhwa +1B) by - %

2
n=1
and for the cxceptional case of forward scatter
@ 2
n-1  ntl _ : (ka)
_S_ i n( > )(An i Bn) by P .
n=
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The degrec of approximation which these imply has been examined for a solected
value of ka and the results are given in section 5, 3,

Such a comparison is not, however, a fair test of the physical optics method
in thaf, additional approximations were made in order to evaluate the integrals I1 and
Iz. The basic assumptions as to the form of the currents can only be tested by a
study of the currents themselves and this will now be done.

At any point (a, 6, @) on the surface of the sphere the physical optics

approximations to the current can be obtained from eqn. (5-3) as

Jd =0 (5"12)
r
J . =2H cos§ ¢ 1ka cos 6 (5-13)
6 o]
and
J¢ =-2 H sinfcosfe ika cos 6 (5-14)

ior 0 =9 =7 /2 (illuminated portion of sphere), with Jr = JO = J¢ =0 otherwise.

In contrast the exuct current distribution is

=8 A +5%) (3-15)
where }_{‘and gs are given by eqns. (2-13) (2-22) aud (2-25). When substituted into

eqn. (5-15) these expressions, together with the Wronskian relations
!
(ka 5 ko) ] {/ke

[ka hn(ka)_] ' [ka hn(ka)]

jn(ka) - hn(ka)
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T3

and

@®
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lead to the formulae e (cos 6)
P pX(cos 6) %
5 - H cos ? ()P —2ntl q{cos L, 0
6 ka n(n+1) i . [,
a1 ka h (ka) sin 6 ka h (ka)]'
n L. n
(5-16)
1 .
and op (cos 6)
@ P ! (cos 9) >
H, m+l 2mtl n %
W Y e N i .
| n [ka h (k=) * sin @ ka h _(ka)
n=l I n
(5-17)

A comparison of equations (5-13)and(5-14) with(5-16)and (5-17) now shows

that the physical optics approximation to the current replaces
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o+l

) aP,I,(cos 6)
ombl Pn(cos 8) i rag ?
otl) 4o h (ka) sin 0 (ke hn(k‘)] j
(5-18)
1
1 apn(cos )
P (cos 9) —_—
2n+1 n 1 a9
n(n+1) [ka hn(ka)] ' gin 6 ka h_(ka)
(5-1
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by

e-—ika cos 8 ~ika cos @

2 and -2cosfe
respectively for 0€ 8 £ 7 /2 and by zero for other valies of 6.

It must be emnhasized, however, that the usefulnzss of ‘he physical optics
approach in scattering problems does not depend entirely upon the accuracy of the
current distribution which it nredicts. The parameters of most practical impor-
taice are the far field amplitudes and the fact that these can be expressed as
stationary forms involving the currents (as in the variational forni lation) suggests
that slight errors in these currents do not necessarily reveal themselves as errors

in the far ficld amplitudes, Ideally it would be desjr<ble to carry out a direct com~

parison of eqns. (5-4) and (5-7) with (2-37) with no approximations rade tu g and

-

T, but the labor involved in a naumerical integration of these integrals prohibits
such an underiaking, Tke curront distribution is the only zlternative basis of
comparison not invclv. ng approximations additional to those of the physical optica
method itself,

5.3 A Particular Case

A significant test of the predictions of physical optics can be achizved by
confining attention to a single, judiciously-chosen value of ka. The case where

ka =10 is convenient for computational purposes and, in addition, leads to a bz:oik-

zeattering cross section whose exast value {(see, for example, Key, Stewart, Pinsor

and Prince, Egsél ) differs from «hat of nhysical optics by (about) the local mean of
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these deviations as a function of ka. To this extent it is representative. Moreover,
it corresponds to a sphere of sufficient size for the reauits to be of practical usc,
but small enough {a= 1. 8\) to give a stringent test of the physical optics method,

The basic assumption of physical optics is an approximation to the current
distribution which would seem to be justified if all dimensions ot the body (inctuding
the radii of curvature) are large compared with a wavelength, Nevertheless, the
method is known to give good results for a wide variety of bodies not excluding
those having point singularities or sharply curved surfaces, and indeed, a sphere of
radius 5\/x falls into the latter category.

A comparison of the pestulated currents witu their exact counterparts for
such a sphere (see figures 5-1 and 5-2) reveals a remarkable amount of agreement
over the entire illuminated surface, the only real discrepancy being nrar to the
shadow edge in that eurrent which is assumed to be discontinuous there.  Over the
shadow area the current. are not zero, contrary to assumption, but the amplitudes
are appreritbly less than for the other hemisphere, particulariy in the case of the
'continuous' current J ¢ At 8 =x the currents are identical, with their amplitudes
showing a marked increase as this point is approached.

The failure of the physical optics approximation to the current in the snadow
18 not surprising since the currents here have to 'fit in' with the unnaturzl form

f;reed upon them in the other region, Moreover, the discrepancies are unlikely to
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have much effect on near-backscattering in view of the shielding action f tha
illuminated hemisphere.

The fact that the overall agreement between the current distributions is
greater than had been supposed does suggest thut the discrepancies which have
been found in physical optics values of scattering cross sectis:z are not nectssarily
attributable to errors in the currents themselves. It may well be that fcr bodies
having no surface singularities, and with a receiver in the illuminated half-space,
the major inaccuracies in the calculated scattering behavior are produced in the
{approximate) evaluation of the physical optics intnzrals. In the p.-esent case,
however, this approximate evaluation ylelds resuits which are quite acceptable
for many purposes. The qualitative agreement between the component echoing
areas is good (see figure 5-3) and indeed, the approximate values are in ervor by
no more than 10 per cent for a sphere of radius 5\/x providing the receiver lies in
the half-space -ontainiag the incident field. Even if the bistatic angle exceeds 00°
the err~-+ in using the optics formuize remain smali, and for a = 3\/x a permitted
error of 16 per cent would extend their validity to cases of scattering through angles
=s large as 120° .

in view of this agreement there seems every reason for putting forward the
physical opiics scattering cross section for use in practical calculations involvitg

spheres of radius greater than 3/2. Providing the receiver is directed at the
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ii:uminated poriion of the sphere, the component scattering cross sectio:nz for a

linearly polarized incident piane wave are

gg = waz coszﬁ

and o
__ .2 .z
o4 =7a" sin [
where 0 and #§ are polar coordinates defined with reference to the directions of
incidence and of the jucident magnetic vector. These results are sufficient to

define the apparent cross section applicable to any recejving system and for any

type of incident polarization.
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